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Abstract. In this paper, we find upper bounds for the eigenvalues of
the Laplacian in the conformal class of a compact Riemannian manifold
(M, g). These upper bounds depend only on the dimension and a con-
formal invariant that we call “min-conformal volume”. Asymptotically,
these bounds are consistent with the Weyl law and improve previous
results by Korevaar and Yang and Yau. The proof relies on the con-
struction of a suitable family of disjoint domains providing supports for
a family of test functions. This method is interesting for itself and pow-
erful. As a further application of the method we obtain an upper bound
for the eigenvalues of the Steklov problem in a domain with C1 bound-
ary in a complete Riemannian manifold in terms of the isoperimetric
ratio of the domain and the conformal invariant that we introduce.

1. Introduction

Let (M, g) be a compact orientable m-dimensional Riemannian manifold.
It is well known that the spectrum of the Laplace operator acting on func-
tions is discrete and consists of a nondecreasing sequence {λk(M, g)}∞k=1
of eigenvalues each occurring with finite multiplicity. If M has a smooth
boundary then the same conclusion is valid for Dirichlet, Neumann or other
reasonable boundary conditions. By Weyl’s law, the asymptotic behavior of
λk is given by (see e.g. [Be])

λk(M, g) ∼ αm
(

k

µg(M)

) 2
m

, k →∞ (1)

where µg is the Riemannian measure associated with g, αm = 4π2ω
− 2
m

m and
ωm is the volume of the unit ball in the standard Rm.
A natural question suggested by this asymptotic formula is the following

Question 1. Does there exists a constant Cm depending only on the dimen-
sion m such that we have

λk(M, g)µg(M)
2
m ≤ Cmk

2
m (2)

for every k ∈ N∗?

An abundant literature has been devoted to this issue starting with Urakawa’s

paper [Ur]. It turns out that λ2(M, g)µg(M)
2
m cannot be bounded above

only in terms of m (see for example [BM], [CD], [CE], [L]). Consequently,
1
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the answer to Question 1 is negative.

In the particular case of the first positive eigenvalue, El Soufi and Ilias
[EI] (see also [FN]) showed that an inequality like (2) holds with a constant
Cm([g]) that depends on the conformal class [g] of the metric g (namely, the
conformal volume introduced by Li and Yau [LY] who proved the same but in
dimension 2). In the case of surfaces, Yang and Yau [YY] proved inequality
(2) with a constant that only depends on the genus of the surface. In 1993,
Korevaar [Ko] generalized these results to higher order eigenvalues. More
precisely, Korevaar obtained the following upper bounds:
(i) If (Mm, g) is a compact Riemannian manifold of dimension m, then for
every k ∈ N∗,

λk(M, g)µg(M)
2
m ≤ cm([g])k

2
m , (3)

where cm([g]) is a constant depending only on the conformal class [g] of the
metric g.
(ii) If (Σγ , g) is a compact orientable surface of genus γ, then for every
k ∈ N∗,

λk(Σγ , g)µg(Σγ) ≤ C(γ + 1)k, (4)

where C is a universal constant.
Notice that inequality (4) provides an affirmative answer to Yau’s conjec-

ture [Ya, page 19]. Korevaar’s results have been discussed by Gromov [Gr]
and revisited by Grigor’yan and Yau [GY] and Grigor’yan, Netrusov and
Yau [GNY] who proposed different proofs.

Another important result in this direction was obtained by Buser [Bu] who
proved that if (Mm, g) is a compact m-dimensional Riemannian manifold
whose Ricci curvature satisfies Riccig ≥ −(m− 1)a2, then for every k ∈ N∗,

λk(M, g) ≤ (m− 1)2

4
a2 + βm

(
k

µg(M)

)2/m

, (5)

where βm is a constant depending only on m.
Colbois and Maerten ([CM] Thm 1.3) proved a similar result for bounded
domains in a complete manifold under Neumann boundary conditions.

In the same vein of the results of Korevaar and Buser, our aim in the
present work is to understand how inequality (2) can be modified into a
valid one. We obtain results that generalize those of Korevaar, Buser, and
Colbois and Maerten mentioned above. The main feature of our approach
is that the modification we propose consists in adding a term (depending on
the conformal class [g] or the genus γ) to the right hand side of (2), instead
of letting the constant Cm depend on [g] or γ as in Korevaar’s inequalities
(3) and (4). The principal advantage of our approach lies in the fact that
it enables us to recover the inequality (2) for any integer k that exceeds a
threshold depending only on [g] or γ (see Corollary 1.3 below).
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In order to state our main result we need to introduce the following con-
formal invariant. If (M, g) is a compact Riemannian manifold of dimension
m, we define its min-conformal volume as follows :

V ([g]) = inf{µg0(M) : g0 ∈ [g], Riccig0 ≥ −(m− 1)}.

Denoting by ρ−(g) the smallest number a ≥ 0 such that Riccig ≥ −(m−1)a2,
one can easily check that

V ([g]) = inf{µg′(M)ρ−(g′)
m
2 : g′ ∈ [g]} (6)

= inf{ρ−(g′)
m
2 : g′ ∈ [g] , µg′(M) = 1}.

Theorem 1.1. There exist, for each integer m ≥ 2, two constants Am and
Bm such that, for every compact Riemannian manifold (M, g) of dimension
m and every k ∈ N∗, we have

λk(M, g)µg(M)
2
m ≤ AmV ([g])

2
m +Bmk

2
m . (7)

It is important to notice that the constant Bm in inequality (7) cannot
be equal to the constant αm in the Weyl law. Indeed, it follows from [CE,

Corollary 1] that such a Bm must satisfy : Bm ≥ mω
2
m
m . On the other

hand, inequality (7) also gives an upper bound on the conformal spectrum
introduced by Colbois and El Soufi [CE] and shows that its asymptotic
behavior obeys a Weyl type law.

Now, if a metric g is conformally equivalent to a metric g0 with Riccig0 ≥
0, then V ([g]) = 0 (see equality (6)). This leads to the following

Corollary 1.1. (see [Ko]) If a compact Riemannian manifold (M, g) of
dimension m ≥ 2 is conformally equivalent to a Riemannian manifold with
nonnegative Ricci curvature, then

λk(M, g)µg(M)
2
m ≤ Bmk

2
m , (8)

where Bm is a constant depending only on m.

In the case of a compact orientable surface Σγ of genus γ, the uniformiza-
tion theorem tells us that any Riemannian metric g on Σγ is conformally
equivalent to a metric of constant curvature. If γ ≥ 2, then g is conformally
equivalent to a hyperbolic metric gγ . Thus, V ([g]) ≤ µgγ (Σγ) = 4π(γ − 1),
where the last equality follows from Gauss-Bonnet Theorem. If γ = 0, 1,
then g is conformally equivalent to a positive constant curvature metric or a
flat metric, respectively. Thus, V ([g]) = 0 in the last two cases. Substituting
in (7), one obtains the following improvement of Korevaar’s inequality (4).

Corollary 1.2. There exist two constants A and B such that, for every
compact Riemannian surface (Σγ , g) of genus γ and every k ∈ N∗, we have

λk(Σγ , g)µg(Σγ) ≤ Aγ +Bk. (9)
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This result gives an upper bound to the topological spectrum introduced
by Colbois and El Soufi [CE] and can be compared with the lower bound
they obtained [CE, p. 341].

In relation with Question 1, we have the following corollary which is a
direct consequence of inequalities (7) and (9).

Corollary 1.3. There exist a constant B′ ∈ R and, for each m ≥ 2, a
constant B′m ∈ R such that the following properties hold.
(1) For any compact Riemannian manifold (M, g) of dimension m ≥ 2,
there exists an integer k0([g]) depending only on the conformal class of g,
such that, for every k ≥ k0([g]),

λk(M, g)µg(M)
2
m ≤ B′m k

2
m ;

(2) For any compact Riemannian surface (Σγ , g) of genus γ, there exists an
integer k0(γ) depending only on γ, such that, for every k ≥ k0(γ),

λk(Σγ , g)µg(Σγ) ≤ B′k.

For any relatively compact domain Ω with C1 boundary in a Riemannian
manifold (M, g), we denote by {λk(Ω, g)}k≥1 the nondecreasing sequence of
eigenvalues of the Neumann realization of the Laplacian in Ω. The method
we will use to prove Theorem 1.1 also allows us to obtain the following

Theorem 1.2. Let (M, g0) be a complete Riemannian manifold of dimen-
sion m ≥ 2 with Riccig0(M) ≥ −(m−1). Let Ω ⊂M be a relatively compact
domain with C1 boundary and g be any metric conformal to g0. Then for
every k ∈ N∗, we have

λk(Ω, g)µg(Ω)
2
m ≤ A′mµg0(Ω)

2
m +B′mk

2
m , (10)

where A′m and B′m are constants depending only on the dimension m.

It is easy to see that we can derive from Theorem 1.1 and Theorem 1.2,
inequalities of type (5) as obtained by Buser [Bu] and Colbois and Maerten
[CM] but with different constants.

The paper is organized as follows: In section 2 we introduce the main
technical tool of the proof which consists in the construction of a suitable
family of capacitors, using the methods of [GNY] and [CM]. The proofs of
Theorem 1.1 and Theorem 1.2 are given in section 3. The last section is de-
voted to the Steklov eigenvalue problem. We prove that our method applies
to this problem and give some upper bounds for the Steklov eigenvalues.
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2. Construction of families of capacitors in an m-m Space

In this section, we present the main technical tool of this paper. Let us
start by recalling some definitions. Throughout this section, the notation
(X, d, µ) will designate a complete and locally compact metric-measure space
(m − m space) with a metric d and a non-atomic finite Borel measure µ.
Each pair (F,G) of Borel sets in X such that F ⊂ G is called a capacitor.

Definition 2.1. Given κ > 1 and N ∈ N∗, we say that a metric space
(X, d) satisfies the (κ,N)-covering property if each ball of radius r > 0 can
be covered by N balls of radius r

κ .

Similarly we define a local version of the covering property as follows:

Definition 2.2. Given κ > 1, ρ > 0 and N ∈ N∗, we say that a metric
space (X, d) satisfies the (κ,N ; ρ)-covering property if each ball of radius
0 < r ≤ ρ can be covered by N balls of radius r

κ .

Lemma 2.1. If a metric space (X, d) satisfies the (κ,N ; ρ)-covering property
(the (κ,N)-covering property), then for any λ > 1, it satisfies the (λ,K; ρ)-
covering property (the (λ,K)-covering property) for some K = K(λ, κ,N)
that does not depend on ρ.

The proof of the lemma when (X, d) satisfies the (κ,N)-covering property
is given in [GNY, Lemma 3.4]. For the (κ,N ; ρ)-covering property, the same
proof applies here verbatim.

Definition 2.3. For any x ∈ X and 0 ≤ r ≤ R, we define the annulus
A(x, r,R) as

A(x, r,R) := B(x,R) \B(x, r) = {y ∈ X : r ≤ d(x, y) < R}.

For any annulus A(x, r,R) and λ ≥ 1, set λA := A(x, λ−1r, λR). Similarly,
for any ball B = B(x, r) we set λB := B(x, λr). If F ⊆ X and r > 0, we
denote the r-neighborhood of F by F r, that is

F r = {x ∈ X : d(x, F ) ≤ r}.

In the following lemmas we recall two methods for metric construction of
disjoint domains.

Lemma 2.2. [GNY, Corollary 3.12] Let (X, d, µ) be an m −m space sat-
isfying the (2, N)-covering property. Then for every n ∈ N∗, there exists a
family A = {(Ai, Bi)}ni=1 of capacitors in X such that

(a) For each i, Ai is an annulus and µ(Ai) ≥ µ(X)
cn ,

(b) {Bi}ni=1 are mutually disjoint and Bi = 2Ai,
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where c is a positive constant depending only on N ( in fact one can take
c = 2 + 4K(1600, 2, N), where K is the function defined in Lemma 2.1).

Lemma 2.3. ([CM, Corollary 2.3] and [CEG1, Lemma 2.1]) Let (X, d, µ)
be an m − m space satisfying the (2, N ; 1)-covering property. For every

n ∈ N∗, let r > 0 be such that for each x ∈ X, µ(B(x, r)) ≤ µ(X)

4Ñ2n
, where

Ñ = K(4, 2, N). Then there exists a family A = {(Ai, Ari )}ni=1 of capacitors
in X such that

(a) for each i, µ(Ai) ≥ µ(X)

2Ñn
, and

(b) the subsets {Ari }
n
i=1 are mutually disjoint.

In the original statement of Lemma 2.3, (X, d) is supposed to have the

(4, Ñ ; 1)-covering property. According to Lemma 2.1, one can replace the

(4, Ñ ; 1)-covering property by the (2, N ; 1)-covering property.
The main construction given in the following theorem results from a merging
of the two previous lemmas. It consists in constructing a disjoint family of
capacitors.

Theorem 2.1. Let (X, d, µ) be an m − m space satisfying the (2, N ; 1)-
covering property. Then for every n ∈ N∗, there exists a family of capacitors
A = {(Fi, Gi)}ni=1 with the following properties:

(i) µ(Fi) ≥ ν := µ(X)
8c2n

, where c is as in Lemma 2.2 ;
(ii) the Gi’s are mutually disjoint ;

(iii) the family A is such that either
(a) all the Fi’s are annuli and Gi = 2Fi, with outer radii smaller than

one, or
(b) all the Fi’s are domains in X and Gi = F r0i , with r0 = 1

1600 .

Proof of Theorem 2.1. In order to find a desired family of capacitors, we
start with the method used by Grigor’yan, Netrusov and Yau [GNY, proof
of Theorem 3.5]. We will call their method GNY-construction. However
we do not have the (2, N)-covering property in order to apply directly the
GNY-construction. Roughly speaking, we will see that when an m − m
space X has the local covering property (i.e. (2, N ; 1)-covering property),
the GNY-construction is applicable to the “massive part” of X (i.e. where
balls of radii r0 have measure greater than ν). If the number of capacitors
built using the GNY-construction on the massive part is not equal to n,
then we introduce a new measure on X. The support of this new measure
is a subset of the complement of the massive part. We shall see that in
this case the method of Colbois and Maerten (Lemma 2.3) that we will call
CM-construction, is applicable.
Let us define

τ1 := sup{r : µ(B(x, r)) ≤ ν ∀x ∈ X}.
If τ1 ≤ r0 then we follow the step 1 (see below). Otherwise we move on to
the step 2 in order to apply the CM-construction.
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Step 1. Applying GNY-construction. Assume τ1 ≤ r0.
We essentially follow the steps of the GNY-construction. However, it is
necessary to make some adaptations since our covering property is of local
nature. We use the same formalism and notations that is used in the GNY-
construction (see [GNY, page 172]). Our goal is to construct by induction
two sequences {Ai} and {Bi} where Ai is a family of annuli in X, and Bi
is a family of balls that cover Ai. These two families satisfy the following
properties :

(i) for each a ∈ Ai we have

µ(a) ≥ ν ;

(ii) the annuli {2a}a∈Ai are disjoint ;
(iii) for each a ∈ Ai, the outer radius of a is smaller than one ;
(iv) the following inclusions hold⋃

a∈Ai

2a ⊂
⋃
b∈Bi

1

4
b ;

(v) we have the inequality

µ(
⋃
b∈Bi

b) ≤ cνi ;

(vi) |A1| = |B1| = 1 and if i > 1 then
- either |Ai| = |Ai−1|+ 1 and |Bi| ≤ |Bi−1|+ 1,
- or |Ai| = |Ai−1| and |Bi| ≤ |Bi−1| − 1,

where |A| denote the cardinal of the family A ;
(vii) if i > 1, then Ai−1 ⊆ Ai ;

(viii) if i > 1, then
⋃
b∈Bi−1

b ⊆
⋃
b∈Bi b.

Observe that by (vi) the sequence of {2|Ai|−|Bi|} is strictly increasing with
respect to i and, since 2|A1| − |B1| = 1, one has

2|Ai| ≥ i.

Notice that if we can continue the inductive process till i = 2n, then we get
a family A = A2n of at least n capacitors satisfying the desired properties
(i), (ii) and (iii)(a) of Theorem 2.1. However here we only have a local cov-
ering property rather than a global one. In order to perform the induction,
we will need to fix an upper bound on the radii of balls in Bi (this restriction
is crucial to have property (v)). This restriction does not always allow us to
continue the inductive process till i = 2n.

To start the induction, take r ∈ (τ1, 2τ1]. Then there exists a point x0 ∈ X
such that

µ(B(x0, r)) ≥ ν.
We define A1 = {B(x0, r)} and B1 = {B(x0, 8r)}. It is easy to see that
properties (i), (ii), (iii), (iv), (vi), (vii) and (viii) are satisfied. Let us verify
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property (v). Since 8r ≤ 16τ1 < 1, by Lemma 2.1, one can cover B(x0, 8r)
by K(16, 2, N) balls of radii r/2 < τ1. Therefore,

µ(B(x0, 8r)) ≤ K(16, 2, N)ν < cν,

which proves the property (v).
Assume now we have constructed A1, . . . ,Ai and B1, . . . ,Bi for some i < 2n.
It follows from the property (iv) for the family Bi that

µ(X \
⋃
b∈Bi

b) > µ(X)− icν > µ(X)− 2ncν = µ(X)− 2nc
µ(X)

8c2n

= (1− 1

4c
)µ(X) >

µ(X)

2
> ν, (11)

because c > 1. Hence, there exists xi ∈ X such that

µ
(
B(xi, r) \

⋃
b∈Bi

b
)
> ν. (12)

We define

τi+1 := sup{r : µ
(
B(x, r) \

⋃
b∈Bi

b
)
≤ ν ∀x ∈ X}.

At this stage the continuation of the construction process depends on the
size of τi+1.

• If τi+1 > r0, we move on to the step 2.
• If τi+1 ≤ r0, we construct families Ai+1 and Bi+1 as follows.

We can assume that r ∈ (τi+1, 2τi+1] in (12). We denote κ the cardinal of:

B := {b ∈ Bi : B(xi, 7× 4r) ∩ 1

2
b 6= ∅}.

Following the GNY-construction, we define Ai+1 and Bi+1 according to the
following alternatives (for more details see [GNY, pp. 174–178]):

Case κ = 0: We define Ai+1 and Bi+1 by

Ai+1 = Ai ∪ {B(xi, r)}, and Bi+1 = Bi ∪ {B(xi, 8r)}.

Case κ ≥ 2: We define Ai+1 and Bi+1 by

Ai+1 = Ai, and Bi+1 = (Bi \ {all balls in the set B})∪ {B(xi, 98× 8r)}.

Note that the ball B(xi, 98×8r) contains all balls in B (see [GNY, p. 175]).

Case κ = 1: If there exists a ball b = B(y, s) ∈ B such that

B(xi, 2r) ∩
1

2
b 6= ∅,

then we define Ai+1 and Bi+1 by

Ai+1 = Ai ∪ {A(y,
1

2
s, 8r)} and Bi+1 = Bi ∪ {B(xi, 14× 8r)}.
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Notice that A(y, 1
2s, 8r) ⊂ B(xi, 14× 8r) (see [GNY, p. 177]).

Otherwise we define Ai+1 and Bi+1 like in the case κ = 0.

Now let us prove that these two families have the properties (i)− (viii).
The properties (vi), (vii) and (viii) are clearly satisfied in each of the three
cases. To check the conditions (i), (ii) and (iv), we can use word-for-word
the arguments given in [GNY, pp. 173–178]. Indeed, this part of their proof
is independent of covering properties.

Let us verify the condition (v). In each of the three cases, we see that
|Bi+1 \Bi| = 1. Let us denote by bi+1 the unique ball in Bi+1 \Bi. According
to the three cases, the radius ri+1 of bi+1 is at most 98 × 8r. Since r ∈
(τi+1, 2τi+1], we have

ri+1 ≤ 98× 8× 2τi+1 < 1600τi+1 ≤ 1, (13)

where the last inequality follows from the assumption τi+1 ≤ r0. By Lemma
2.1, the ball bi+1 can be covered by K(1600, 2, N) < c balls with radii
ri+1

1600 ≤ τi+1. Therefore

µ(
⋃

b∈Bi+1

b) = µ(
⋃
b∈Bi

b) + µ(bi+1 \
⋃
b∈Bi

b) ≤ cνi+ µ(bi+1 \
⋃

b∈Bi+1

b)

≤ cνi+K(1600, 2, N)ν ≤ cνi+ cν ≤ cν(i+ 1),

which proves the condition (v).
It remains to check the condition (iii). For this, it is enough to verify that
the outer radius of the annulus a ∈ Ai+1\Ai is smaller that one. One can see
in each of the three cases, Ai+1\Ai ⊂ Bi+1\Bi = {bi+1}. By inequality (13),
the radius of bi+1 is smaller than one and proves the condition (iii) for Ai+1.

Step 2. Applying CM-construction. Assume τi > r0 for some 1 ≤ i ≤
2n. It means that

- if i = 1, then µ(B(x, r0)) ≤ ν, for all x ∈ X ;
- if 1 < i ≤ 2n, then µ(B(x, r0) \

⋃
b∈Bi−1

b) ≤ ν, for all x ∈ X.

We consider the m−m space (X, d, µ̃i) where

• µ̃i := µ if i = 1 ;
• µ̃i(A) := µ(A \

⋃
b∈Bi−1

b) if 1 < i ≤ 2n.

It follows from inequality (11) and the above inequalities that

µ̃i(X) >
µ(X)

2
,

and

µ̃i(B(x, r0)) ≤ µ(X)

8c2n
≤ µ̃i(X)

4Ñ2n
.

Consequently, that the m −m space (X, d, µ̃i) satisfies the assumptions of
Lemma 2.3. Therefore, there exists a family {(Aj , Ar0j )} of n capacitors in
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X such that the Ar0j ’s are mutually disjoint and

µ̃i(Aj) ≥
µ̃i(X)

2Ñn
≥ µ(X)

8c2n
.

Since µ(Aj) ≥ µ̃i(Aj), this family of capacitors satisfies the conditions
(i), (ii) and (iii)(b) of Theorem 2.1. �

The following proposition shows that for a sufficiently large integer n,
it is always possible to apply the GNY-construction to obtain a family of
n capacitors satisfying the properties (i), (ii) and (iii)(a) of Theorem 2.1.
The application of this observation to the eigenvalue problem is discussed
in Remark 3.2 of the next section.

Proposition 2.1. Let (X, d, µ) be a compact m − m space satisfying the
(2, N ; 1)-covering property. Then there exists a positive integer kX such that
for every n > kX , there exists a family A of n mutually disjoint capacitors
in X that satisfies the properties (i), (ii) and (iii)(a) of Theorem 2.1.

Proof. Since X is compact, we can cover X by T balls of radii r0 = 1
1600 .

Set

kX =
T

4c2
.

It is enough to show that for every n > kX and 1 ≤ i ≤ 2n, we have τi ≤ r0.
Indeed, suppose that there exists an integer j ≤ 2n such that τj > r0. Then
by the definition of τj , we have the following inequality

µ̃j(B(x, r0)) ≤ ν =
µ(X)

8c2n
. (14)

It follows from the above inequality that

µ(X)

2
≤ µ̃j(X) ≤ µ

 ⋃
xi∈X,1≤i≤T

B(xi, r0)

 ≤ T µ(X)

8c2n
.

Hence n should be smaller than T
4c2

. Therefore, τj ≤ r0 for every j ≤ 2n.
It follows that at the step i = 2n of the inductive process (see the proof
of Theorem 2.1 step 1), we have a family of n mutually disjoint capacitors
satisfying the proposition, which completes the proof. �

3. Eigenvalues estimates on Riemannian Manifolds

In this section we apply Theorem 2.1 to a special case of m −m spaces
which are Riemannian manifolds, in order to prove Theorem 1.1 and The-
orem 1.2. The arguments we use to prove these two theorems are similar.
We start by giving in details the proof of Theorem 1.2.

Definition 3.1. Let (Mm, g) be a Riemannian manifold of dimension m.
The capacity of a capacitor (F,G) in M is defined by

capg(F,G) = inf
ϕ∈T

∫
M
|∇gϕ|2dµg,
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where T = T (F,G) is the set of all compactly supported Lipschitz functions
on M such that supp ϕ ⊂ G◦ = G \ ∂G and ϕ ≡ 1 in a neighborhood of F.
If T (F,G) is empty, then capg(F,G) = +∞. Similarly, we can define the
m-capacity as

cap
(m)
[g] (F,G) = inf

ϕ∈T

∫
M
|∇gϕ|mdµg.

Since m is the dimension of M , it is clear that the m-capacity depends only
on the conformal class [g] of the metric g.

Proposition 3.1. Under the assumptions of Theorem 1.2, take the m−m
space (Ω, dg0 , µ), where dg0 is the Riemannian distance corresponding to the
metric g0 and µ is a non-atomic finite measure on Ω. Then for every n ∈
N∗, there exists a family of capacitors A = {(Fi, Gi)}ni=1 with the following
properties:

(i) µ(Fi) ≥ µ(Ω)
8c2mn

;

(ii) the Gi’s are mutually disjoint ;
(iii) the family A is such that either

(a) all the Fi’s are annuli, Gi = 2Fi and cap
(m)
[g0] (Fi, 2Fi) ≤ Qm, or

(b) all the Fi’s are domains in Ω and Gi = F r0i ,

where r0 = 1
1600 and, cm and Qm are constants depending only on the di-

mension.

Proof. Let us start with the observation that the metric space (Ω, dg0) sat-
isfies the (2, N ; 1)-covering property. For each ball B(x, r) with center in Ω
and radius smaller than 1, take a maximal family {B(xi, r/4)} of disjoint
balls with centers in B(x, r). Let κ be the cardinal of that family. The
family of balls {B(xi, r/2)} covers B(x, r). Hence

κmin
i
µg0(B(xi, r/4)) ≤

∑
i

µg0(B(xi, r/4)) ≤ µg0(B(x, r + r/4)).

Take xi0 such that µg0(B(xi0 , r/4)) = mini µg0(B(xi, r/4)). We have

κ ≤ µg0(B(x, r + r/4))

mini µg0(B(xi, r/4))
≤ µg0(B(x, 2r))

µg0(B(xi0 , r/4))
≤ µg0(B(xi0 , 4r))

µg0(B(xi0 , r/4))
.

Since Riccig0(Ω) ≥ −(m − 1), thanks to the Bishop-Gromov volume com-
parison Theorem, we have ∀ 0 < s < r,

µg0(B(x, r))

µg0(B(x, s))
≤
∫ r

0 sinhm−1 t dt∫ s
0 sinhm−1 t dt

.

Since for every positive t one has t ≤ sinh t ≤ tet, we get

µg0(B(x, r))

µg0(B(x, s))
≤
(r
s

)m
e(m−1)r.

In particular, we have

µg0(B(x, r)) ≤ rme(m−1)r (15)
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and, ∀r < 1,

κ ≤ µg0(B(xi0 , 4r))

µg0(B(xi0 , r/4))
≤ 24me4(m−1)r =: C(r) ≤ C(1). (16)

One can take N = C(1) and deduce that (Ω, dg0) has the (2, N ; 1) covering
property where N depends only on the dimension.
Now the proof of Proposition 3.1 is a straightforward consequence of The-
orem 2.1. Recall that in the statement of Theorem 2.1, the constant c
depends only on N . Therefore, in our case c depends only on the dimen-
sion. It remains to verify that in the case of annuli, there exists a constant
Qm depending only on the dimension such that for each i, we have

cap
(m)
[g0] (Fi, 2Fi) ≤ Qm.

According to Theorem 2.1, the outer radii of the annuli we consider are
smaller than one. It is enough to show that for each point x ∈ Ω and
0 ≤ r < R ≤ 1/2, we have

cap
(m)
[g0] (A, 2A) ≤ Qm, (17)

where A = A(x, r,R). Set

f(x) =


1 if x ∈ A(x, r,R)

2dg0 (x,B(x,r/2))
r if x ∈ A(x, r/2, r) = B(x, r) \B(x, r/2)

1− dg0 (x,B(x,R))
R if x ∈ A(x,R, 2R) = B(x, 2R) \B(x,R)

0 if x ∈M \A(x, r/2, 2R)

.

It is clear that f ∈ T (A, 2A) and

|∇g0f(x)| ≤ 2

r
, on B(x, r) \B(x, r/2),

|∇g0f | ≤
1

R
, x ∈ B(x, 2R) \B(x,R).

Therefore

cap
(m)
[g0] (A, 2A) ≤

∫
M
|∇g0f |mdµg0

≤
(2

r

)m
µg0(A(x, r/2, r)) +

( 1

R

)m
µg0(A(x,R, 2R))

≤
(2

r

)m
µg0(B(x, r)) +

( 1

R

)m
µg0(B(x, 2R)).

Now since r, 2R ∈ (0, 1], Using inequality (15), one can control the last in-
equality by a constant Qm depending only on the dimension which completes
the proof of inequality (17). �

Remark 3.1. Since C(r) defined in (16) is a strictly increasing function
of r, it follows that (Ω, dg0) does not necessarily satisfy the (2, N)-covering
property for some N depending only on the dimension.

Now we show how Theorem 1.2 follows from Proposition 3.1.
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Proof of Theorem 1.2. Take the m−m space (Ω, dg0 , µΩ), where µΩ = µg|Ω.
According to Proposition 3.1, there exists a family {(Fi, Gi)} of 3k capacitors
which satisfies the properties (i), (ii) and either (iii)(a) or (iii)(b) of the
proposition. We consider each case separately.
Case 1. If {(Fi, Gi)}3ki=1 is a family with the properties (i), (ii) and (iii)(a)
of Proposition 3.1, then

λk(Ω, g) ≤ A′m
(

k

µg(Ω)

) 2
m

, (18)

where A′m = 24c2
m(2Qm)

2
m .

Indeed, we begin by choosing a family of 3k test functions {fi : fi ∈
T (Fi, Gi)}3ki=1 such that∫

M
|∇g0fi|mdµg0 ≤ cap

(m)
[g0] (Fi, Gi) + ε.

Therefore,

R(fi) =

∫
Ω |∇gfi|

2dµg∫
Ω |fi|2dµg

≤
(∫

Ω |∇g0fi|
mdµg0

) 2
m
(∫

Ω 1suppfidµg
)1− 2

m∫
Ω |fi|2dµg

≤
(cap

(m)
[g0] (Fi, Gi) + ε)

2
m (µΩ(Gi))

1− 2
m

µΩ(Fi)
. (19)

The first inequality follows from Hölder inequality and, because of the con-
formal invariance of

∫
|∇gfi|mdµg, we have replaced g by g0. Since the Gi’s

are disjoint domains and
∑3k

i=1µΩ(Gi) ≤ µg(Ω), at least k of them have

measure smaller than
µg(Ω)
k . Up to re-ordering, we assume that for the first

k of the Gi’s we have

µΩ(Gi) ≤
µg(Ω)

k
. (20)

Now, we can take ε = Qm. Using Proposition 3.1 (i) and (iii)(a) and in-
equality (20), we get from inequality (19)

R(fi) ≤ A′m

(
µg(Ω)
k

)1− 2
m

µg(Ω)
k

= A′m

(
k

µg(Ω)

) 2
m

,

with A′m = 24c2
m(2Qm)

2
m , which completes the proof of Case 1.

Case 2. If {(Fi, Gi)}3ki=1 is a family with the properties (i), (ii) and
(iii)(b) of Proposition 3.1, then

λk(Ω, g) ≤ B′m
(
µg0(Ω)

µg(Ω)

) 2
m

, (21)
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where B′m = 24c2m
r20

.

Indeed, we define the test functions fi as follows

fi(x) =


1 if x ∈ Fi

1− dg0 (x,Fi)
r0

if x ∈ (Gi \ Fi)
0 if x ∈ Gci

.

We have |∇g0fi| ≤ 1
r0

. Therefore,

R(fi) =

∫
Ω |∇gfi|

2dµg∫
M |fi|2dµg

≤
(∫

Ω |∇g0fi|
mdµg0

) 2
m
(∫

Ω 1suppfidµg
)1− 2

m∫
Ω |fi|2dµg

≤
1
r20

(µg0(Gi ∩ Ω))
2
m (µΩ(Gi))

1− 2
m

µΩ(Fi)
. (22)

Since the Gi’s are disjoint, we have

3k∑
i=1

µg0(Gi ∩ Ω) ≤ µg0(Ω) and
3k∑
i=1

µΩ(Gi) ≤ µg(Ω).

Hence, there exist at least 2k sets among G1, . . . , G3k such that µg0(Gi) ≤
µg0 (Ω)
k . Similarly, there exist at least 2k sets (not necessarily the same ones)

such that µg(Gi) ≤ µg(Ω)
k . Therefore, up to re-ordering, we assume that the

first k of the Gi’s satisfy both of the two following inequalities

µΩ(Gi) ≤
µg(Ω)

k
and µg0(Gi ∩ Ω) ≤ µg0(Ω)

k
. (23)

Using Proposition 3.1 (i) and inequalities (23), we get from inequality (22)

R(fi) ≤ B′m

(
µg0 (Ω)
k

) 2
m
(
µg(Ω)
k

)1− 2
m

µg(Ω)
k

≤ B′m

(
µg0(Ω)

µg(Ω)

) 2
m

with B′m = 24c2m
r20

, which completes the proof of Case 2.

In both cases, λk(Ω, g) is bounded above by the sum of the right-hand
sides of (18) and (21), which completes the proof. �

Remark 3.2. To avoid a possible confusion, it is judicious to examine the
proof of Theorem 1.2. In the proof, we begin with the GNY-construction but
the method may break down for some j < 2n in the sense that we may not
be able to find j (or more) disjoint small annuli. In such a case, inequality
(14) holds. The validity of inequality (14) implies that the CM-construction
is applicable with r = r0 which gives an estimate for λk of the form given in
inequality (21). This may appear to be unreasonable since the right hand
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side is independent of k. However, as pointed out in Proposition 2.1, the
GNY-construction for a given compact Riemannian manifold is applicable
for all n sufficiently large, but we have no control over the constants and how
large n should be. The method described above enables one to establish the
validity of the estimate for those finite number of k’s for which the GNY-
construction is not applicable.

Proof of Theorem 1.1. Consider the m−m space (M,dg0 , µg), where dg0 is
the distance associated with the metric g0 and µg is the measure associated
with the metric g. We easily see that we can follow the same arguments as
in the proof of Theorem 1.2 to derive the following inequality

λk(M, g)µg(M)
2
m ≤ Amµg0(M)

2
m +Bmk

2
m . (24)

The left hand side does not depend on g0. Hence, we can take the infimum
with respect to g0 ∈ [g] such that Riccig0 ≥ −(m − 1), which leads to the
desired conclusion. �

4. Steklov Eigenvalues

It is worth pointing out that Theorem 2.1 is formalized in a general setting
and is applicable to other eigenvalue problems. In this section we present
an application of this theorem to the Steklov eigenvalue problem.

Steklov problem. Let Ω be a bounded subdomain of a complete m-
dimensional Riemannian manifold (M, g) and assume that Ω has nonempty

smooth boundary ∂Ω. Given a function u ∈ H
1
2 (∂Ω), we denote by ū the

unique harmonic extension of u to Ω, that is{
∆gū = 0 in Ω
ū = u on ∂Ω

.

Let ν be the outward unit normal vector along ∂Ω. The Steklov operator is
the map

L : H
1
2 (∂Ω) → H−

1
2 (∂Ω)

u 7→ ∂ū

∂ν
.

The operator L is an elliptic pseudo differential operator (see [Ta, pages
37-38]) which admits a discrete spectrum tending to infinity denoted by

0 = σ1 ≤ σ2 ≤ σ3 . . .↗∞
The eigenvalue σk of L can be characterized variationally as follows (see
[CEG2]):

σk(Ω) = inf
Vk

sup{
∫

Ω |∇gū|
2dµg∫

∂Ω |ū|2dµ̄g
: 0 6= ū ∈ Vk}, (25)

where Vk is a k-dimensional linear subspace of H1(Ω) and µ̄g is the Rie-
mannian measure associated to g on the boundary.
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The relationships between the geometry of the domain and the spectrum
of the corresponding Steklov operator have been investigated by several au-
thors (see for example [CEG2], [FS] and [GP]). Recently, Fraser and Schoen
[FS, Theorem 2.3] proved the following inequality for the Steklov eigenval-
ues of a compact Riemannian surface (Σγ , g) of genus γ and κ boundary
components:

σ2(Σγ)`g(∂Σγ) ≤ 2(γ + κ)π,

where `g(∂Σ) is the length of the boundary. This result was generalized to
higher eigenvalues by Colbois, El Soufi and Girouard [CEG2, Theorem 1.5].
Indeed, the authors proved the following inequality for every k ∈ N∗

σk(Σγ)`g(∂Σγ) ≤ C(γ + 1)k, (26)

where C is a universal constant.
For a domain in a higher dimensional manifold, the authors [CEG2, Theorem
1.3] also obtained an upper bound for σk depending on the isoperimetric
ratio of the domain. More precisely, if (M, g) is conformally equivalent
to a complete manifold with non-negative Ricci curvature, then for every
bounded domain Ω of M and every k ∈ N∗,

σk(Ω)µ̄g(∂Ω)
1

m−1 ≤ Cm
k

2
m

Ig(Ω)1− 1
m−1

, (27)

where Ig(Ω) is the isoperimetric ratio (Ig(Ω) =
µ̄g(∂Ω)

µg(Ω)
m−1
m

) and Cm is a con-

stant depending only on m.

The theorem below is motivated by the work of [CEG2], and we obtain an
improvement of inequalities (26) and (27) using Proposition 3.1.

Theorem 4.1. Let (M, g0) be a complete Riemannian manifold of dimen-
sion m ≥ 2 with Riccig0(M) ≥ −(m−1). Let Ω ⊂M be a relatively compact
domain with C1 boundary and g be any metric conformal to g0. Then we
have

σk(Ω)µ̄g(∂Ω)
1

m−1 ≤ Amµg0(Ω)
2
m +Bmk

2
m

Ig(Ω)1− 1
m−1

, (28)

where Am and Bm are constants depending only on m.

As an immediate consequence we get the following inequality in the case
of Riemann surfaces:

Corollary 4.1. Let (Σγ , g) be a compact oriented Riemannian surface with
genus γ, and Ω be a subdomain of Σγ. Then

σk(Ω)`g(∂Ω) ≤ Aγ +Bk, (29)

where A and B are constants.
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Proof of Theorem 4.1. We consider them−m space (Ω, dg0 , µ̄), where µ̄(A) :=
µ̄g(A∩∂Ω). We apply again Proposition 3.1. Therefore, there exist a family
of 3k capacitors {(Fi, Gi)} satisfying properties (i), (ii) and either (iii)(a),
or (iii)(b) of Proposition 3.1. We proceed analogously to the proof of Theo-
rem 1.2. Using the variational characterization of σk, we construct a family
of test functions as in Case 1 and Case 2 of the proof of Theorem 1.2. In
both cases, we have

σk(Ω) ≤
∫

Ω |∇gfi|
2dµg∫

∂Ω |fi|2dµ̄g
≤
(∫

Ω |∇g0fi|
mdµg0

) 2
m µg(Gi)

1− 2
m

µ̄(Fi)
.

If the family {(Fi, Gi)} satisfies the properties (i), (ii) and (iii)(a) of Propo-
sition 3.1, then

σk(Ω) ≤ Am

(
µg(Ω)
k

)1− 2
m

µ̄g(∂Ω)
k

≤ Am
k

2
m

µ̄g(∂Ω)
1

m−1 Ig(Ω)1− 1
m−1

. (30)

If on the other hand, the family {(Fi, Gi)} satisfies the properties (i), (ii)
and (iii)(b) of Proposition 3.1, then

σk(Ω) ≤ Bm

(
µg0 (Ω)
k

) 2
m
(
µg(Ω)
k

)1− 2
m

µ̄g(∂Ω)
k

≤ Bm
µg0(Ω)

2
m

µ̄g(∂Ω)
1

m−1 Ig(Ω)1− 1
m−1

, (31)

where the constant coefficients Am and Bm are the same as A′m and B′m in
Theorem 1.2.
The proof of inequalities (30) and (31) are along the same lines as Theorem
1.2. In both cases, σk(Ω) is bounded above by the sum on the right-hand
sides of (30) and (31), and it completes the proof. �
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