Amenable actions of amalgamated free products

Soyoung Moon*

October 13, 2008

Abstract

We prove that the amalgamated free product of two free groups of rank
two over a common cyclic subgroup, admits an amenable, faithful, transitive
action on an infinite countable set. We also show that any finite index sub-
group admits such an action, which applies for example to surface groups and
fundamental groups of surface bundles over S*.

1 Introduction

An action of a group G on a set X is amenable if there exists a G-invariant mean on
X, ie. amap p:2% =P(X)— [0,1] such that u(X) =1, u(AUB) = u(A) + u(B)
for every pair of disjoint subsets A, B of X, and u(gA) = u(A), Vg € G, VA C X.

The study of amenability goes back to von Neumann [12] and has spanned over
the 20th century in various fields of mathematics, such as geometric group theory,
harmonic analysis, graph theory, operator algebra, etc. While the class of amenable
groups is well-understood, the class of groups admitting an amenable action seems
to be not at all obvious: F. P. Greenleaf asked in [7] whether the presence of a
G-invariant mean on a set on which G acts faithfully implies that the group G is
amenable, and the first counter example was given in [4], where E. K. van Douwen
constructed an interesting amenable action of the non-abelian free group.

For the study of amenable actions of a group G, we should require some restric-
tions on the G-action in order to avoid trivial cases. One should assume that the
action is faithful, otherwise one would take immediately a free group F,, n > 2,
and any non-trivial normal subgroup N <F,, such that the quotient group F, /N
is amenable (e.g. N = F) the commutator subgroup), so that the natural action
of F,, on F,, /N is amenable but not faithful. In addition, one should require that
G acts transitively, otherwise one could take any group G and X = G LY where
G acts on Y amenably, so that the G-action on X is faithful and amenable (since
there is a G-equivariant map from Y into X). In this direction, Y. Glasner and
N. Monod [6] proposed to study the class A of all countable groups which admit a
faithful, transitive and amenable action. The class A is closed under direct prod-
ucts and free products, and a group is in A if it has a co-amenable subgroup which
is in A (Proposition 1.7 in [6]). On the other hand, in general the class is neither
closed under passing to subgroups (the case of finite index subgroups is open), nor
closed under semidirect products. As an example for semidirect product, one may
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take the group SLs(Z) x Z2; while SLy(Z) is in A since it contains a free group
of finite index, the pair (SLo(Z) x Z?2,7?) has the relative property (T) (cf [2]), so
that the group SLs(Z) x Z? is not in A (Lemma 4.3 in [6]). Besides, this group
is another example which shows that the class A is not closed under amalgamated
free products; one may see the group SLy(Z) x Z? as the amalgamated free product
G4 H of G =7/4Z x Z? and H = Z/6Z x Z? along A = Z/27 x Z* and notice
that the three groups G, H and A are in A since they are amenable.

In particular, Y. Glasner and N. Monod showed that the free product of any two
countable groups is in A unless one factor has the fixed point property and the other
has the virtual fixed point property?; for this, they used an argument of genericity
in Baire’s sense (Theorem 3.3 in [6]). Let us mention that another construction of
amenable action of a non-abelian free group is obtained by R. Grigorchuk and V.
Nekrashevych in [8].

The main result of this paper is, motivated by this method of genericity, to
give another example of non-amenable group which is in A (see Theorem 17 and
Theorem 19):

Theorem. Fs xz Fy € A, where Z embeds in each factor as subgroup generated by
some common word on the generating sets.

The key point of the proof is to fix a transitive permutation 3 and take a generic
element « (i.e. an element in the intersection of countably many generic sets) in
order to construct Fo = (o, 3) in a way that the amalgamated free product of two
copies of Fy along a cyclic group has the desired properties. Therefore, the difficulty
of the proof resides in the choice of the generic sets because they can be very “nasty”
(see Proposition 1).

As we mentioned before, in general it is not known whether the class A is closed
under passing to finite index subgroups or not. But it is true for our case (see
Theorem 20):

Theorem. For any finite index subgroup H of Fy x5 Fy as above, H € A.

A surface group Iy is the fundamental group of a closed oriented surface of genus
g > 2. The group I'; can be view as an amalgamated free product of two copies of
[, along the subgroup generated by the commutator, i.e. T's = (a1, b1) *(cy (a2, b2)
where ¢ = [a1,b1] = [az, ba]. For g > 3, T'y injects into I's as a finite index subgroup.
Therefore, by applying our results, we have the following theorem (see Theorem 21):

Theorem. 'y € A, Vg > 2.

As a corollary, we obtain that the fundamental group of a 3-manifold which
fibers virtually over the circle is in A. Indeed, let M be a 3-manifold which fibers
over the circle. Then there is a short exact sequence:

0—-Ty—-mM)—-Z—0,

so that the subgroup I'y is co-amenable in m (M). Moreover, if M is a 3-manifold
which fibers virtually over the circle, then it contains a finite index subgroup which

LA group G has the fized point property if any amenable G-action has a fixed point, and G has
the virtual fized point if it has a finite index subgroup having the fixed point property.
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is in A, so that m (M) is also in A. Some examples of the fundamental group
of such manifolds are given in [1], which includes the Bianchi groups PSL(2,0,),
where Oy is the ring of integers of the imaginary quadratic field Q(v/—d) with d a
positive integer.

Acknowledgement. I would like to thank Nicolas Monod for suggesting the ques-
tion and for helpful discussions, and Alain Valette for his constant help and encour-
agement.

2 Baire spaces

For the importance of the idea of generic choice, we briefly discuss Baire spaces in
this chapter.

Definition 2.1. A topological space X is a Baire space if every intersection of
countably many dense open subsets is dense in X.

Equivalently, X is a Baire space if every union of countably many closed subsets
with empty interior has empty interior.

Definition 2.2. A Polish space is a separable completely metrizable topological
space, i.e. it is a space homeomorphic to a complete space that has a countable
dense subset.

Observe that any closed subspace of a Polish space is Polish.

Let X be an infinite countable set. Equipped with the discrete topology, X is a
complete topological space. Let us denote by XX the set of all self-maps of X and
endow it with the topology of pointwise convergence (i.e. v, converges to « if for
all finite subset F' of X, there exists ng such that a,|r = a|p, for all n > ng). This
is the product of the topologies of X. Hence XX is complete being a product of
complete spaces, and it is separable and metrizable since it is a countable product
of separable, metrizable spaces. So XX is a Polish space and by Baire’s theorem,
it is a Baire space.

Let us denote by Sym(X) C XX the group of permutations of X. Equipped
with the induced topology of XX, Sym(X) is a topological group. Indeed, let
{an}n>1 be a sequence converging to a in Sym(X). Let F' C X be a finite subset
of X. There exists ng such that o, |pua—1r = @|pua-17, Vi > ng. Then for all
z € F, we have a,(a™1(z)) = ala™!(z)) = z, so a,(z) = a~(z), Vn > ny.
Therefore a,, ! converges to a~!, so that the application o — a~! is continuous.
Moreover, let {8, }m>1 be a sequence converging to 8 in Sym(X). Let FF C X
be a finite subset of X. There exists n; such that o, |rusr = a|rugr, Yn > ni.
In addition, there exists ng such that 8,,|r = 8|r, for all m > ny. Then for all
x € F, an(Bm(z)) = an(B(x)) = af(z), for all m > max{ny,na}. Therefore a,, G,
converges to a3, so that the application (a, 8) — «af is continuous.

Consequently, the injection i : Sym(X) — XX x XX; a +— (a,a™!) is a home-
omorphism onto its image which is closed. Thus Sym(X) is a Polish space, in
particular it is a Baire space.

Definition 2.3. A subset Y C Sym(X) is called
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- meagre or first category if it is a union of countably many closed subsets with
empty interior;

- generic or dense Gy if its complement Sym(X) \ Y is meagre, i.e. it is an
intersection of countably many dense open subsets.

By definition of the topology on Sym(X), a subset ¥ C Sym(X) has empty
interior if for all @’ € Y and for all finite subset F' C X, there exists « € Sym(X)\Y
such that o/ |F = alp.

3 Construction of [Fy

Let X be an infinite countable set. Let 8 be a simply transitive permutation of
X. Let ¢ = ¢(a, 8) be a weakly cyclically reduced word (i.e. if ¢ = gy, - -~ g1, then
gm # g7 ') on the alphabet {a®!, 5%} such that ¢ ¢ (5).

Proposition 1. The set
Uy ={a € Sym(X) | Ywe (o, B)\{c), there exist infinitely many x € X such that
cx =z, cwr =wr and wr # T }

is generic in Sym(X).

Proposition 2. The set

Uy = {a € Sym(X) | Vk € Z\ {0}, 3z € X such that 'z # x}
is generic in Sym(X).
Note that Us is the set of a’s such that ¢ has infinite order.

Definition 3.1. Let ¢ = ¢(«, ) be a weakly cyclically reduced word. Let S(«) be
the sum of exponents of «, and S(8) be the sum of exponents of . We say that ¢
is special if ¢ is one of the following type:

(1) S(a) =5(B) = 0;
(2) S(«) divides S(3).
Let {A,,}52; be a pairwise disjoint Fglner sequence for 3, that is

. |An A B A
lim ——— =0.
Proposition 3. Let ¢ be a special word. The set

Us ={a € Sym(X) | there exists {An, }req a subsequence of {An}oey such that
c(An,, ) C Fix(c), Vk > 1 and {An, }72, is a Folner sequence for o}

is generic in Sym(X).
Proposition 4. The set
Uy = {a € Sym(X) | VH finite index subgroup of («, 3), the H-action on X is transitive }

is generic in Sym(X).
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From the previous four propositions, one deduces immediately:

Corollary 5. Let ¢ be a special word on {a, B}. Let « € Uy NUs NUs NUy. Then
(a, B) ~Fy and

(1) the action of Fy on X is transitive and faithful;

(2) for all w € (o, B)\ (c), there exist infinitely many x € X such that cx = z,
cwx = wx and wx # x. In particular, there are infinitely many fixed points
of cin X;

(3) there exists a pairwise disjoint Folner sequence for (o, B) which is fized by c;

(4) for all finite index subgroup H of {«, 3), the H-action on X is transitive.

3.1 Proofs of Propositions 1 and 2

Propositions 1 and 2 are sufficient conditions for faithfulness of Fy-action with some
additional “unnatural looking” properties that will be needed for construction of
Fs %z Fo in Chapter 4. As we resort to the graph theory for these proofs, we begin
by fixing the notations on graphs that will be used in the section. The fundamental
notions are based on [10].

3.1.1 Graph extension

A graph G consists of the set of vertices V(G) and the set of edges F(G), and
two applications E(G) — E(G); e — € such that € = e and € # ¢, and E(G) —
V(G) x V(G); e — (i(e),t(e)) such that i(e) = t(€). An element e € E(G) is a
directed edge of G and € is the inverse edge of e. For all e € E(G), i(e) is the initial
vertex of e and t(e) is the terminal vertex of e.

Let S be aset. A labeling of a graph G = (V(G), E(G)) on the set S*! = SUS~!
is an application

1:E(G)— S*le—l(e)

such that I(e) = I(e)~t. A labeled graph G = (V(G), E(G), S,1) is a graph with
a labeling I on the set S*!. A labeled graph is well-labeled if for any edges e,
¢’ € E(G), [i(e) =i(¢’) and l(e) = I(¢’)] implies that ¢(e) = t(e’).

A word w = wy, - - - wy on {a, B} is called reduced if w11 # w,;l, V1<k<m-1.
A word w = wyy, - - -wy on {a, B} is called weakly cyclically reduced if w is reduced
and w,, # wfl. We denote by |w| the word length of w. Given a reduced word, we
shall define two finite graphs labeled on {a*!, 3%} as follows:

Definition 3.2. Let w = w,, - - -w; be a reduced word on {«a, 5}. The path of w is
a finite labeled graph P(w,vg) consisting of |w| + 1 vertices and |w| directed edges
{e1, ..., em} such that

ci(ej1) =t(e;), VI<j<m-—1;
- vg =i(e1) # tlem);

- l(ej) =wj, V1 < j<m.
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Yo

Figure 1: The path of w

Definition 3.3. Let w = wy, - --w; be a reduced word on {«, 3}. The cycle of w
is a finite labeled graph C(w,vg) consisting of |w| vertices and |w| directed edges
{e1, ..., em} such that

ci(ejr1) =t(e;), VI<j<m-—1;
© Vo = i(el) = t(@m),

- l(ej) =wj, V1 < j<m.

Figure 2: The cycle of w

Notice that since w is a reduced word, the graph P(w,vg) is well-labeled. If w
is weakly cyclically reduced, then C(w,vp) is also well-labeled.

Reciprocally, if P = {e1, €3, ..., e,} is a well-labeled path with i(e;) = vy,
labeled by I(e;) = g;, Vi, then there exists a unique reduced word w = g, - g1
such that P(w,vg) is P. If C = {ei, €2, ..., en} is a well-labeled cycle with

t(e,) = i(er) = vo, labeled by l(e;) = g;, Vi, then there exists a unique weakly
cyclically reduced word wy = gy, - - - g1 such that C(w,vg) is C.

Let X be an infinite countable set. Let 3 be a simply transitive permutation of
X. We shall represent the f-action on X as an infinite 2-regular well-labeled graph.
The pre-graph Gy is a labeled graph consisting of the set of vertices V(Go) = X
and the set of edges E(Gy) where for all e € E(Gy), l(e) = § and such that every
vertex has exactly one entering edge and one leaving edge. One can imagine G as
the Cayley graph of Z with 1 as a generator.

Definition 3.4. An extension of Gy is a well-labeled graph G labeled by {a®!, g+11,
containing Gog. We will denote it by Go C G.

In order to have a transitive action with some additional properties of the («, 3)-
action on X, we shall extend Gy by adding finitely many directed edges labeled by
«a on G where the edges labeled by (§ are already prescribed. In order that the
added edges represent an action on X, we put the edges in such a way that the
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extended graph is well-labeled, and moreover we put an additional edge labeled by
« on every endpoint of the extended edges by «; more precisely, if we have added
n edges labeled by a between xg, 1, ..., T, successively, we put an a-edge from
Zn 10 xo to have a cycle consisting of n 4+ 1 edges (see Figure 3). On the points
where no a-edges are involved, we put a loop labeled by «; this means that these
points are the fixed points of a. In the end, every point has a entering edge and a
leaving edge labeled by « (the entering edge is equal to the leaving edge if the edge
is a loop), so that the graph represents an («, 3)-action on X, and every a-orbit is
finite.

Figure 3: The a-orbit of zy that has the size n + 1.

Definition 3.5. Let G, G’ be graphs labeled by {a*!, g*'}. A homomorphism
f: G — @G is a map sending vertices to vertices, edges to edges, such that

- [li(e)) = i(f(e)) and f(t(e)) = t(f(e));
- 1(e) = U(f(e)),
for all e € E(G).

If there exists an injective homomorphism f : G — G’, we say that f is an
embedding, and G embeds in G’. If there exists a bijective homomorphism f : G —
G’, we say that f is an isomorphism, and G is isomorphic to G’.

Proposition 6. Let w = w,, ---wy be a reduced word on {«, f}. Let P(w,vy) =
{e1,...,em} be the path defined in Definition 3.2. There exists an extension G of
Go such that P(w,vg) embeds in G, and P(w,vg) is isomorphic to its image by the
corresponding embedding. In particular, the image of P(w,vg) is a path in G.

Proof. Tt is enough to consider the case where w = @2 Gb2n—1... % gbsga2gbt
with m = 37" | (|b2i—1| + |azi|). Indeed, the other three cases follow from this case
by taking n large enough since we are treating all subwords of w. Let N = max;|b;|.
For z € X, denote by By(z) = {#'2 | =N <1 < N} a segment in the -orbit of z.

Choose zp € X. For all 1 < k < n, we extend Gy inductively by applying the
following algorithm:

Algorithm (A)

(1) Let 251 = (BP2+=129)_o;
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(2) Choose zor, € X such that By(z2r) is outside of the finite set of all used
points;

(3) Choose |agr| — 1 points {p§“%), ol pl(:llj:l)—l} outside of the finite set of all
points used so far;

(4) Put the directed edges labeled by a*9"(@2¢) from

- Zog—1 to pﬁa“’);

i) to p{H, V1 < < Jagk| — 2;
ot 10 220,
so that we have a®* 29, _1 = 29.

In the end, we have added )", |as;| new directed edges labeled by a (or o)
on Gy (see Figure 4). Let G be the extended graph of Gy. In this construction,

we have considered |w| + 1 points {zo, [oian(01) 5 B2sign(d1) 5 By = 2,
atiom(a2) gh1 5 002 B0 gy = 2y, L wzo} in X, that are
{20, w120, wowi 20, ..., wzo}

with l((wk,l ceewr20), (WEwWk—1 - - ~w120)) = wg, where (p1, p2) symbolizes the edge
e with i(e) = p; and ¢(e) = pa.
Now, we define an embedding f : P(w,vy) — G by
E(P(w,vg)) —
e1 = (vo,t(e1))
er = (i(ex), tlex)) —

E(G)
20, wlzo)’

Wh_1 - W120, Wk -+ W120), V2<k<m.

By construction, P(w,vg) is isomorphic to its image. O

Proposition 7. Let w = wy, w1 be a weakly cyclically reduced word on {a, 5}
with w ¢ (B). Let C(w,v9) = {e1,...,em} be the cycle defined in Definition 3.3.
There exists an extension G of Go such that C(w,vg) embeds in G, and C(w,vq) s
isomorphic to its image by the corresponding embedding. In particular, the image
of C(w,vp) is a cycle in G.

Proof. It is enough to consider the case where w = a@nbn-1...q% gbsg%2 301
with m = Z?:l (|b21‘_1| + |a2i|). Let N = man|bj|.

Choose zp € X. We extend Gy inductively by applying Algorithm (A) for
1 <k<n-—1 Let 291 = 129, 5. Choose |az,| — 1 points {pa,, ..,
Dlas,|—1) outside of the finite set of all points used so far. Put the directed edges
labeled by a%97(%2n) from

- Zon—1 Y0 p1;
- pjto pit1, V1 <j < lag,| —2;

. p‘a2n|,1 to z20-
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Bb1 Z)=z,

Gasz1 ZO= 22

) Plazl-1

B

Bb2n-1.,.a628b1 ZO= ZZn-1 >

Wz,=2,,

Figure 4: Construction of a path in G
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We define an embedding f : C(w,vg) — G by
E(G)

20, w120)7

(
(wg—1 -+ w120, Wg - w120), V2<k<n-—1,
(W —

1T 11

Wm—1 " " W120, ZO)-

By construction, C(w,vg) is isomorphic to its image.
O

Corollary 8. Let w be a reduced word. Let F C Gy be a finite subset of X. There
exists an extension G of Go such that P = P(w,vo) embeds in G, the image P of
P is isomorphic to P, and the intersection of P and F is empty. In addition, we
can replace P(w,vg) by C(w,vg) if w is weakly cyclically reduced and w ¢ (53).

Proof. The construction of the extension consists of choosing some finite points in
X. Therefore, it is enough to choose all considering points far enough outside of
F. O

3.1.2 Property (FF)

Let ¢ = ¢ -+ 1 be a weakly cyclically reduced word, such that ¢ ¢ (5). Let
w = wg, - - - wy be areduced word, such that w ¢ (¢). Let C(c, vg) be the cycle defined
in Definition 3.3. Let P(w,vg) be the path defined in Definition 3.2 such that every
vertex of P(w,vg) (other than vg) is distinct from every vertex in C'(c, vg). Let wuvg
be the endpoint of P(w,vy). Let C(c, wvg) be the cycle with i(¢1) = t(cm) = wu,
such that every vertex of C(c,wvg) (other than wuwp) is distinct from every vertex
in P(w,vo) UC(c,v9) (see Figure 5). Let us denote by Qo the union of C(c,vy),
P(w,vg) and C(c,wvp). In general, this finite labeled graph @ is not well-labeled.
However, by identifying the successive edges with the same initial vertex and the
same label, Q¢ becomes a well-labeled graph @ (See Figure 6 for an example of the
processus).

C(c, vp) ” » ) - C(c, wv,)
w, v,

Figure 5: The graph Qo = C(c, v9) U P(w,vg) U C(c, wup)

In the end of the processus of identification of “double edges”, @) has fewer edges
than Qg; however, the cycle C(c,vp) is not modified, in the sense that the “shape”
of C(e,vp) in Qo is the same as in Q.

By construction, in each processus, the graph has the following property:

Property (FF)

(1) the starting point of C(c,vp) is equal to its endpoint which is wvp;
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wy,

Figure 6: Example of gluing double edges

11
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(3) the starting point of P(w,vg) is different from its endpoint;
(2) the starting point of C(c, wvy) is equal to its endpoint which is wwvy.

The acronym (FF) stands for “Faithfulness for w and fixed points of ¢”. When
this processus is finished, @ will be one of the following four types (Figure 7) of
well-labeled graph satisfying the property (FF):

Figure 7: Four types of Q

Proposition 9. For every four type of well-labeled graph Q@ = Q(c,w,vy), there
exists an extension G of Gy such that QQ embeds in G and the image Q(c,w, zp) of
Q by the embedding has the property (FF), i.e. there exists a such that the word w
satisfies

Czp = Z0;

w2z # Zo;

CWwzpg = wzg.

where zq is the image of vy in G.

The third condition means that w™'cw fixes zo.

We have to prove that every cycle in each types in Figure 7 contains at least
one directed edge labeled by o or a~!. This is the difficulty of the proof since
the graph P(w,vy) 1C(c,wvy)P(w,vy) can be shrunk and produce a cycle that
can be labeled by “anything” (of course if Qg is already well-labeled, we are done
since the two cycles are labeled by ¢ and ¢ ¢ (3)). The labeling of the graph
P(w,v9)1C (e, wvo) P(w, vg) is w™tew. So we need to investigate the possible re-
duction of the word w~!cw.

Let us recall the well-known theorem concerning the test for conjugacy of two
words (see Theorem 1.3 in [13]):

Theorem 10. Two words in the free group F,, define conjugate elements of F,, if
and only if their cyclic reductions in F,, are cyclic permutations of one another.

The following lemma gives some useful elementary properties of w™!cw:

Lemma 11. Let ¢ = ¢, - - - ¢1 be a weakly cyclically reduced word, such that ¢ ¢ ().
Let w = wy, - - -wy be a reduced word, such that w ¢ (c). We have:

(1) The word w™tcw contains at least one o or a™ L.
(2) The word w™cw cannot be reduced to the form of \B*A~ for all k € 7Z.

(8) The word w™rcw cannot be reduced to the form of ¢y -+ cpi13¥cy - c1, for
all 1 <p<m, and for all k € Z\ {0}.
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(4) The word w™'cw cannot be reduced to the form of ¢y, - - Cp+1>\71/8k)\6p ceecq,
for all1 <p <m, and for all k € Z\ {0}.

(5) If ¢ has the form v3' with v ¢ (B), then w™lcw cannot be reduced to the form
vB~k, with sign(k) = sign(l), Vk € Z.

(6) If c has the form Bly with v ¢ (B), then w™lcw cannot be reduced to the form
y~LBk, vk € Z.

(7) If ¢ has the form Xof8'\1 such that Ao ¢ (B) or Ay & (B), then w™'cw cannot
be reduced to the form \o3~F\1, with sign(k) = sign(l), Vk € Z.

Proof. The statements (1) and (2) are obvious by applying Theorem 10 since ¢ ¢ (3)
and it is weakly cyclically reduced. For (3) and (4), one shall notice that the two
forms are weakly cyclically reduced since c is. Therefore, if these forms are conjugate
to ¢, their word length have to be |c|, so k has to be 0.

For (5), let v3! with v = 7, -~y ¢ (3). By contradiction, let us suppose that
Y- -y10 is conjugate to vy, - --v1 7% with k1 > 0. Without loss of generality,
we can suppose that 71, v, ¢ {8%}. There are four types of cyclic permutations
of ypn---mpBl, which are v, -85 Blyn 15 By B2 with i + 1 = 1
and 7y, - - Y18 - - “Yp+1 for a certain 1 < p < n. Obviously, 7, - - -y18~% cannot
be of the first three types; so let us suppose that there exists 1 < p < n such
that ~, - B - “Ypt1 = VYn - 71 87! (since the two conjugate elements have
the same length). By identification of the first letter on the right of the two words,
we have 7,11 = 3~!. However, by identifying the (n — p + 1)*® letter, which is 8
for the left side, and 7,41 for the right side, we have 8 = 7,41 which contradicts
with the first identification.

The proof of (6) is similar to that of (5), and (7) follows from (5). O

Proof of Proposition 9. The labeling of the graph P(w,vo)~1C(c, wv)P(w,vo) is

w™lew. Let us write the word w™!cw in the reduced form: w™lcw = £,&—1 - &1 =:

¢.
G

(1) Type 1:
Figure 8: Type 1 of @

In this type, among all possible ways that £ = w™!cw runs on this graph, it is

enough to consider the four cases as in Figure 9, where £ are the following forms:

SE=6t Mg G with & = wn ¢ {er, o)
- g: C;l "'C;l)\_lT)\Cp' - C1;
- €= cm~~~cp+1)\’17')\cp~~cl;

_ —1,y .1 -1
-l =Cm I AT ITAC L Oy
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Figure 9: Four subtypes of type 1

because other cases follow from these four cases (indeed, other cases are where & is
one of these four words, their inverses, or their left or right products with ¢*¢, i.e.
et or £c¢t? where ¢ is one of the previous four forms).

In the first case &€ = &' - ~§p_17'£p ---&1, the word &, ... & is represented by the
path P; and the word 7 is represented by the cycle Cs. Let us fix zg € Gog. By
Proposition 6, there exists an extension Gy D Gy such that the image P; of P is a
path in Gy. Since P is finite and ¢ ¢ (), by Corollary 8, there exists an extension
G5 D G such that the image C) of C; is a cycle in Gy and the intersection of C
and P is zp. Let us call z; € Gy the endpoint of P;. By (2) of Lemma 11, Cy has
to have an edge o (or a~1). Then again by Proposition 6, there exists an extension
G35 O G such that Cs is a cycle in G5 and the intersection of Cy and P, UC, is 2.

For other three cases where the word A is represented by the path Pj, the proofs
are similar; we only have to prove that not all edges of Cs are labeled by 5*!s, so
that we will be able to extend Gy by adding P;, C; and C5 consecutively. Indeed
it is the case since 7 ¢ () by (2) and (4) of Lemma 11.

(2) Type 2:

Figure 10: Type 2 of @

In this case, it is enough to show for £ equal to:

- 5: 671 o ’51 with 51 = w1 ¢ {Cla C:nl} and gn ¢ {61_13 Cm};
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SONO

Figure 11: Four subtypes of type 2

where ¢ is represented by the cycle Cs for the first case, and 7 is represented by the
cycle Cy for the other three cases (see Figure 11). As seen previously, it is enough
to prove that not all edges of Cy are labeled by B%'; indeed it is the case for all
four types by (1) and (3) of Lemma 11.

(3) Type 3:

Figure 12: Type 3 of @

In this graph, there are three cycles C' = P, U P,, P, U P3 and P; U Ps.
. Claim. If one of the three paths P;, P, and Ps has only edges labeled by 3*!,
then the other two paths both contains edges labeled by a*!.

The claim allows to conclude. In fact, without loss of generality, suppose that
Py has only edges labeled by 8% and P, ¢ (8) and P; ¢ (8). We first take an
extension G; D Gy such that the image of P; is a path in G;. Then we take
an extension Gy D G7 such that P is a path in G5 which connects the starting
point and the endpoint of P; outside of the finite subset P;; that is possible since
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Type 3.1 Type 3.2
Z O
Type 3.3 Type 3.4

2y z,
Figure 13: Four subtypes of type 3

the graph is well-labeled and P, contains edges labeled by «. Finally, we take an
extension G3 D G such that P; is a path in G35 joining these two points outside of
P UP;.

We now prove the claim. There are four possibilities for £ = w™
this graph as presented in Figure 13.

For the type 3.1, we may take £ = ¢ --- c;l)\. Let us suppose that P, € (3),
SO Say Cp -+ cpr1 = BF. Then Py ¢ (B) since ¢ ¢ (B). In addition, P3 ¢ (3)
since otherwise ¢ would be a form of 8%y and ¢ would be a form of y~13¢, which
contradicts with (6) of Lemma 11.

If P, € (B), then P; ¢ (B) and P; ¢ () since C = PLUP, ¢ () and PsU Py =
{&} ¢ (B) by (1) of Lemma 11.

If Py € (B), then Py ¢ (8), s0 & = c;' - ¢y '\ = ¢ "¢, % Therefore,
Py ¢ (B) by (6) of Lemma 11.

Lew to run on

For the type 3.2, we may take £ = ¢, - - - cpp1A. If Py € (), then P, ¢ (8), and
P3¢ <ﬂ> blnceC:P1UP2¢ <6> andP3UP1:{§}¢<B>

If P, € (), then P, ¢ (B), so c is the form of ¢ = y3* with v ¢ (3). Since Q is
well-labeled, if P; € (3), then P3 would be the form y3~! with sign(l) = sign(k).
Therefore, P5 ¢ () by (5) of Lemma 11.

If P3 € (8), then P; ¢ (B). So & = ¢+ Cpr1iA = Cm -+ cpy13F, therefore
P, ¢ (B) by (5) of Lemma 11.

For the type 3.3, we may take & = cp - CppiAcy---c1, where A is repre-
sented by the path Ps;. If P3 € (8), then P ¢ (8). Moreover, P» = {cpy1,
oy Cpyi—1} & (B) since otherwise we would have ¢ = ¢, -+ ¢3¢y - c1 and
€ = cpmcpufBfcy - c1 with sign(k) = sign(l), which would contradict (7) of
Lemma 11.

If P, € (), le. cpyi—1-"-Cpy1 = G, then € = ¢y, - - - CpHIACp -+ - €1 = A2AA; and
c = A2f'A;. Therefore Py = {A\} ¢ (B8) by (7) of Lemma 11 and P; ¢ (3) since
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c¢ ().
If P, € (8), it is obvious that P, ¢ (3) and P3 ¢ (3).

For the type 3.4, we may take & = 61_1 . -~c;1c;i1 . -~c;jl/\cp~-~cl, where A

is represented by the path P3 and C;h RN il is represented by the path P,. By
letting Ay = ¢p - - - ¢y and Ao = Cpqq -+ - Cpy1, We have § = )\flAgl)\Al and ¢ = TAg\1,
where 7 = ¢y, - - Cpti41, 50 that A7 is represented by the path P;. We have to
show that (i) if A € (8), then Ay ¢ (3), and 7 or Ay is not in (B3); (ii) if Ay € (B),
then A ¢ (B), and 7 or A; is not in (B); (iii) if Ay and 7 are in (B), then Ay ¢ (B)
and A ¢ ().

(i) Let A = 8%, so that € = A\T'A;'8%A;. Then Ay ¢ (B) by (2) of Lemma 11.
Moreover, A; and 7 cannot be in () at the same time since otherwise ¢ would be
a form ¢ = B2 Xy and ¢ would be a form & = ﬁ_ll)\glﬁkﬁll, and such two words
cannot be conjugate by (6) of Lemma 11.

(ii) Let Ao = (%, s0 ¢ = 7%\, and & = A7'B7FAN;. Then A ¢ (B) by (2) of
Lemma 11 and A7 ¢ (0) since ¢ ¢ ().

(iii) Let Ay = 8" and 7 = 32, so ¢ = B2 X\f" and & = 71 A; A3, Then
clearly A2 ¢ (8), and X\ ¢ (5) by (6) of Lemma 11.

(3) Type 4: It follows from Proposition 7.
O

Corollary 12. Let Q = Q(c,w,vg) be a well-labeled graph. Let F C Gy be a finite
subset of X. There exists an extension G of Gy such that the image Q(c,w, zy) of
Q(c,w,vy) in G preserve the property (FF), and the intersection of Q(c,w, zo) and
F is empty.

O

3.1.3 Proof of Proposition 1

Let ¢ = a1 3% ... q% (3% be a weakly cyclically reduced word on {a, 3} (the other
three types are similar). Let w € {(«, ) \ (¢) be a reduced word on {«a, 8}. We shall
prove that the set

Vi = {a | there exists a finite number of = such that cx = z, cwr = wz, and wzr #
is meagre. For K C X a finite subset of X, let
Vi, x = {a | (Fix(c) Nw™'Fix(c) Nsupp(w)) C K},

where supp(w) = {z € X | wz # z}.

The set Vi, k is closed since if a, converges to «a, then c(ay, 3) converges to
c(a, B) and w(ay,, B) converges to w(ca, ). We shall prove that the interior of V,,
is empty.

Lemma 13. Let o/ € Sym(X) and F C X be a finite subset of X. There exists
a € Sym(X) such that a|p = &'|F and supp(a) C F U/ (F).

z }
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Proof. Let us partition F' into finitely many pieces F' = L2, P; according to the
orbits of o/. If &/(P;) = P;, then define a|p, = o/|p,. If not, write P; = {p;, &/ (p;),

., i (p)} with o/**1(p;) ¢ F. Then define ap, = o/|p, and a(a’**1(p;)) =
Di- 0

We see X as the pre-graph Gg, where the 8% edges of Gy are seen as the
transitive action of 3% on X, which is fixed from the beginning.

Let o € Vi k and let F' C X be a finite subset of X. Let Y = FU&/(F)UK
be a finite subset of X. We construct a well-labeled graph Q(c, w, vg) as in Section
3.1.2. We choose zg ¢ Y and take o which is defined on F' as in Lemma 13, and
which satisfies the property (FF) without touching any points of ¥ (Corollary 12).
By consequent, a ¢ Vi, x and a|p = o/|p.

3.1.4 Proof of Proposition 2
We want to prove that for all £ € Z \ {0}, the set
Ve = {a € Sym(X) | ¥ =1d}

is meagre.

Indeed, it is clearly closed. Moreover, let o’ € Vi and let ' C X be a finite
subset of X. Let P(c*,vy) be the path defined in Definition 3.2. We choose 2z ¢
F U (F) =Y and take o which is defined on F as in Lemma 13, and such that
P(c*, z) is a path in X not touching any point of Y. By consequent, a ¢ V; and
OZ‘F = Oé,|F.

3.2 Proof of Proposition 3

Let ¢ be a special word. Let {A,,},>1 be a pairwise disjoint Fglner sequence for (.
Let {€;};>1 > 0 be a sequence tending to 0. Let us write

Us = ﬂ ﬂ {a € Sym(X) | 3k > N such that Ay C Fix(c) and |Ax A aAy| < &|Ak| }.
I NeN

Set e, = €. We want to prove that the set
Vn = {a € Sym(X) |Vk > N, Ay € Fix(c) or |Ar & aAy| > e|Ag| }

is meagre. We treat the case ¢ = a® % ...q% 3% (the other three types are
similar). Let M = max;|b;| and set

By = UM 8" (Ay),
a finite set of X.
- VN 1s closed. Since VN = Ni>nVn,r Where
Vni = {a € Sym(X) | Ay € Fix(c) or |Ay A aAg| > e|Ax] },

it is enough to prove that Vyj is closed. So let {a,}n>1 be a sequence in Vy i
which converges to a € Sym(X). Since Ej is finite, there exists ng such that
alg, = anlg,, Vn > ng. Therefore, a € Vy , because Ay, C E.
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- VN is of empty interior. Let us distinguish two cases:

First, suppose that S(a) = S(8) = 0. Let o/ € V. Let F C X be a finite subset
of X. We choose m > N such that (F U/ (F))N E,, = 0. We define a|g,, =Id
and a|p = o/|p. Then A,, C Fix(c) since S(8) = 0, and |4,, A ad,,| = 0 since
a(Am) = Am. So a ¢ V.

Second, suppose that S(«) divides S(3). Let o' € Vy. Let F C X be a
finite subset of X. We choose m > N such that (FU o/ (F))NE, = 0 and
|Ap A ﬁ_%(Amﬂ < €|Apn|; this is possible as {A,,} is a Fglner sequence for 3.
We define

)
alz) = p75@ (z), Vz € Ep,
and a|F = o/|p. Then,
clw) = BT g fI N P (@) = B a) =,
for all x € E,,. In particular, 4,, C Fix(c). In addition,

(
A A ahm| = |Am & 875 (An)] < el Aml,
so o ¢ Vn.

3.3 Proof of Proposition 4

The proof follows from the three claims:

- Claim 1. Let G be a group and H < G be a finite index subgroup of G. Then,
for all g € G, there exists n > 1 such that ¢” € H.

Indeed, let N be the core of H, that is N = [ .4 x~'Hx C H. The subgroup
N is a finite index normal subgroup of G. Then for all g € G, g™ € N, where
m =[G : NJ.

- Claim 2. The set
Us ={a € Sym(X) | Yn, m € Z \ {0}, the (a”, f)-action on X is transitive }

is in Uy.

Indeed, let o € Us. Let H < {a, B) be a finite index subgroup. Then by Claim
1, there exist ng, mg such that @™ and ™0 are in H, so (o™, ™) < H. Since
the (@™, f™0)-action on X is transitive by hypothesis, the H-action on X is also
transitive.

- Claim 3. The set Uy is generic in Sym(X).

It is enough to prove that the set Us is generic since Us C Uy. So let us prove
that for all n and m, the set V, ,, = {a € Sym(X) | (o™, 8™)-action on X is not
transitive } is closed and it has empty interior.

- Vp,m 15 closed. Write
Vom = {a€Sym(X) |3z, y € X such that Yw € (", ™), wz #y }
= {ae Sym(X)|3I(x;,z;) € S x S such that Vw € (", ™), wx; # x; }

= U  {eeSym(X)|vwe (@, ™), we; # x;}
(z;,x;)€ESXS
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where S is a finite family of representatives for 5"*-orbits. It is clear that the set
{a € Sym(X) | Yw € (o™, ™), wz; # x;} is closed. So V,, n is closed as a finite
union of closed sets.

 Vn,m 15 of empty interior. Let o' € V,, 1, and let F' C X be a finite subset of
X. Let Y := F U/ (F) be a finite subset of X. We choose representatives for -
orbits outside of Y, and form a finite family S = {z1, ..., z;,} of X; this is possible
since the ™-orbits are infinite. We define a on F' as in Lemma 13. Inductively on
1 <i<m—1,in each ™-orbit O(z;) of z;, we choose n — 1 points {p; 1, pi 2, -- -,
Pin—1} outside of ¥ and define

s al) = pig;
- alpig) =Pijt1, V1 <j<n—2;
~a(Pin—1) = Tiy1.
Then, in O(z,,), we choose n —1 points {pm, 1, - - -, Pm,n—1} outside of Y and define
~oTm) = Pmt;
- pmj) = Pmjr1, VIS j <n—2;
’ a(pm,n—l) =x.

By construction, o™ (x;) = 41, V1 < i < m—1, and o™ (z,,) = x1, so the (", f)-
action is transitive.

4 Construction of [y x5 [y

Let X be a countable infinite set. Let ¢ = ¢(«, 8) be a special word. Let G := Fy =
(a, ) be constructed as in Chapter 3. Let {A,}52, be a Fglner sequence such
that c(4,) = Ap, Vn > 1. Let Z, = {0 € Sym(X) | oc = co} be the centralizer
of c. Let o = o lao, B =0"180, and let H := (o/, #'). Let A = {(c) be the
subgroup of G generated by c. We consider Fy %7 Fo = G x4 H the amalgamated
free product of G and H along A. For all 0 € Z, the action of G*4 H on X is given
by gz = g(a, B)xr = gz, and h -z = h(d/, ')z = 0~ h(a, B)ox = o~ hoz, for all
geGand h e H.

Lemma 14. The set Z. is closed in Sym(X). In particular, Z. is a Baire space.

Proof. The application p : Sym(X) — Sym(X); 0 — J[o,c] is continuous. So
Z. = p~{id} is closed since {id} is closed in Sym(X). O

Proposition 15. The set
O, ={oc € Z.| the action of GxaH on X is faithful }

s generic in Z..



Proof. For all w € G x4 H, let us denote by w? the corresponding element of
Sym(X) given by the above action, i.e. if w = agphy ---g1h1, witha € A, g; £e €
G\ Aand h; #e € H\ A, for all 4, then

W’ = agno thpo---gio thio.
We want to prove that

O = m {o € Z. | Iz € X such that w’z # x }
w#eeGx s H

is generic in Z.. Therefore, we have to prove that the set
Vw={c€Z, |w” =1dx}

is meagre in Z..

The set V,, is closed in Z. because the application Z, — Sym(X); o — w is
continuous.

To see that the set V), is of empty interior, let ¢’ € V,,, and let F C X be a finite
subset of X. Notice that if F = Fy U F, with F; C Fix(c) and F, ¢ Fix(c), then
o'(F1) C Fix(c) and o'(F>) € Fix(c) because o' (Fix(c)) = Fix(c), for all ¢’ € Z,.
So we define o|p, = 0’|, as in Lemma 13, and o|x\pix(c) = 0’| x\Fix(c)- Therefore,
we have defined o on Y := (FU¢'(F))U (X \ Fix(¢)), and o|y commutes with c|y.
Let us now define 0 on X \' Y in a way that o € Z.\ V,,. For all g € G\ A and
he H\ A, let

g={zre X |cx=ux,cgr=grand gz #x },
E:{xeX|cx=x, chx = hx and ha # x }.
Recall that we are considering the word w” = agn,o 'hyo--- g0~ hio. Choose
any xo € X \'Y. By induction on 1 < i < n, we choose x4;,—3 € h; such that x4;_3
is different from the finite set of points 1, ..., 24;—4 chosen until the (i — 1)th step.
This is possible since l/z; is infinite by Proposition 1. Then we define ox4;_4 = T4;—3
and oxy;_3 := w4;—4. This is well-defined because x4;_4, x4;—3 € Fix(c). We set
hix4i_3 =: T4;_o which is different from x4;_3 and which is fixed by ¢, by definition
of f; We choose z4;_1 € g; such that z4;_1 is different from the finite set of points
chosen so far. This is again possible since g; is infinite (Proposition 1). Then we
define oxy;_o = w4i—1 and oxy;_1 = T4;—o. This is also well-defined because
Zai—2, Tai—1 € Fix(c). We finally set g;x4;—1 =: x4;. By construction, the 4n
points defined by the subwords on the right of w? are all distinct. In particular,
w7 Ty = aTan = Tan F To. Besides, this construction works also for the other three
types of word w since we are treating all subwords of w. At last, if w = a € A\ {Id},
then there exists z € X such that ax # x by Proposition 2. Therefore, o constructed
in this way is beautifully in Z.\ V,, and ¢’|r = o|F.
O

Proposition 16. The set

Oy ={o€Z. | there exists {An, }x>1 a subsequence of {A,}n>1 such that
o(An,) = A, Vk>1}

s generic in Z..



Proof. We want to prove that the set

Oz = () {0 € Z.| 3n = N such that o(A,) = A, }
NeEN

is generic in Z.. So we shall prove that the set
Vn={0€Z.|Vn= N, oc(A,) # An}
is meagre in Z,.
- Vn s closed. It is enough to prove that the set
Van={0€Z.|0(A,) # A}

is closed since Vn = Np>n Vi n. Let {0 }m>1 C Vi v be a sequence converging to
o in Z.. Since A, is finite, there exists mg such that o,,(A,) = d(4,), Ym > my.
Thus we have o(A,) # A, since o,,,(A,) # Ap.

- VN is of empty interior. Let o/ € Vi and let FF C X be a finite subset of X.
Let Y := (FUo'(F))U(X \Fix(c)). Since A,, C Fix(c) (Proposition 3), there exists
n > N such that A, NY = (). We take then ¢ € Z. which fixes A, and o|y = o’|y.
Therefore, 0 € Z.\ Vy and o|p = o'|F. O

Let 0 € O1NO;. Let {A,, }x>1 be a subsequence of { A, },,>1 such that o(4,, ) =
Ay, Yk > 1. We claim that {4, }x>1 is a Felner sequence for G *4 H. Indeed, for
all g € G and for all h € H, we have

A, - An A, B)An

o M 8 b Anl A 8B ) Al e, 5 0 h(a, B An, |
g oA 0 (@ AoA| A 8 b B A

since {A,, } is Fglner for G and o(A,, ) = A,,,. Therefore, we have:

Theorem 17. There exists a transitive, faithful and amenable action of (a, B) * ()
(o, ") on X.

Lemma 18. Let ¢ = ¢(a, 8) be any word (not necessarily special) on {a, 3}. There
exists an automorphism a of Fo such that a(c) is a special word.

Proof. Let us recall some properties of automorphisms of free groups. The reader
can find more details in [9]. Let F be a free group with a finite basis X of n
elements. We consider the following endomorphisms of F. For any x € X, let
¢, be the endomorphism defined by ¢, : @ — 7% y — y, Vy € X \ {z}. For
any ¢ #y € X, let ¢y 1 ¢ — 2y; 2 — 2, Vz € X \ {z}. In both cases, the
image of X is another basis for F, and ¢, and ., are automorphisms of F, called
the Nielsen generators for Aut(FF), and they generate Aut(F). Let F/F’ ~ Z™ be
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the abelianization of F. We have Aut(Z") ~ GL,(Z). The Nielsen generators for
Aut(F) induce the following generators for Aut(Z"):

P,ix——x; y—vy, YyeX\{z}h

Yoy x+y; 22—z, VzeX\{z}

Thus, we conclude that the natural maps from Aut(F) into Aut(Z™) is an epimor-
phism. Notice that for a word c to be a special word depends only on its image in Z2.
Therefore, in order to prove the Lemma, it is enough to find a matrix M € GLy(Z)
such that the exponent sum S(a)’ := S, () (c) of exponents of « in the word a(c) di-
vides the exponent sum S(3)" := Sy (83) of exponents of 3 in the word a(c), where
a € Aut(F2) is a reciprocal image of M by the epimorphism Aut(F) — Aut(Z?).
In fact, once we have ¢ = ¢(a, 8) with S(«) dividing S(8), we can obtain a weakly
cyclically reduced word by conjugating ¢, and the conjugation is an automorphism
of ]F2 .

If S(8) = 0, ¢ is already a special word. If S(«a) = 0 and S(3) # 0, then
(1) (1) € GL2(Z) which exchanges S(a) and S(8). So
suppose that S(a) # 0 # S(06). Let d = ged(S(a), S(B)) be the greatest common
divisor of S(a) and S(53). By Bézout’s identity, there exist relatively prime integers
p, q such that pS(a) + ¢S(8) = d. Since ged(p, —q) = 1, there exist r, ¢t such

we apply the matrix

that rp — t¢g = 1 again by Bézout’s identity. Then, the matrix M = Zt) g ) is
in GL2(Z) and it sends ( ggg; > to ( £5(a) —irS(ﬁ) > Therefore, S(a) = d
divides S(8) = tS(a) + rS(5). O

From Theorem 17 and the previous Lemma, we have:

Theorem 19. Let ¢ = c(a, 3) be any word on {a,B}. Then (o, B) * (¢/, (")
admits a transitive, faithful and amenable action.

A result of G. Baumslag [3] shows that these groups are residually finite.

Furthermore, let H be a finite index subgroup of Fy x7 Fy. Then K := H NFy
is a finite index subgroup of Fs so that the H-action on X is transitive since the
K-action is. Therefore, we have:

Theorem 20. For any finite index subgroup H of («, ) *() (¢, 3"), H admits a
transitive, faithful and amenable action.

5 Applications
Let us recall the class of all countable groups appeared in [6]:
A ={ G countable | G admits a faithful transitive amenable action }.

Let ¥, be a closed oriented surface of genus g > 2. It is well-known that the
fundamental groups I'y = m(2,) of 3, has a presentation

g
7T1(Eg) = <a1a b17 - Qg bg | H[aiabg]>'
=1
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In particular, we have 71(32) = (a1,b1) * () (az,b2) where ¢ = [a1,b1] = [a2, ba].
Therefore, 7 (X,) € A by Theorem 19 (or already by Theorem 17 since ¢ = [a1, b1]
is a special word). Now, let 3, be a closed oriented surface of genus g > 3. Viewing
Y, as (g — 1) tori glued on a central one, the cyclic group Z/(g — 1)Z acts properly
and freely on X,, and the quotient space is Xy. Therefore m(X,) injects into
m1(X2) as a subgroup of index (¢ — 1) (in other words, X, is a (g — 1)-sheeted
regular covering of ¥5). Consequently, m(2,) is in A by Theorem 20. Moreover,
the fundamental group of a torus 71 (T?) = 71 (2;) is isomorphic to Z?2, an amenable
group. Therefore, we have:

Theorem 21. Let 3, be a closed oriented surface of genus g > 1. The fundamental
group I'y = m1(Xy) of X4 admits a transitive, faithful and amenable action, for all
g=>1.

Corollary 22. For any compact surface S, the fundamental group 71(S) is in A.

Proof. First of all, we can suppose that S is oriented. In fact, it is well-known
that if S is a non-oriented connected surface, then there exists a oriented 2-sheeted
covering space S (cf. [5]). Then m;(S) is a subgroup of index 2 of 71 (S) so that it
is co-amenable in w1 (S) (a subgroup H < G is co-amenable if the G-action on G/H
is amenable). Therefore, in order that 71 (S) € A, it suffices to have m,(S) € A by
Proposition 1. (vi) in [6].

If S is a closed oriented surface (i.e. without boundary), S is either a sphere
or a finite connected sum of tori ¥4, g > 1; so m1(S) € A in both cases. If S is
a surface with boundary components, then 71(S) is a free group (the fundamental
group of a sphere with p boundary components is a free group of rank p — 1, and
the fundamental group of ¥, with p boundary components is a free group of rank
2g+p—1,Vg > 1), so it is again in A.

O

Example 5.1. Surface bundles over S!

A surface bundle over S! is a closed 3-manifold which is constructed as a fiber
bundle over the circle with fiber a closed surface. The fundamental group G of such
bundle can be viewed as an HNN-extension

G =m1(My) = (Dy,t | tgt™ = ¢.(g), Vg € Ty),
where ¢ : 35 — Y, is a homeomorphism. Thus, we have a short exact sequence:
0—-TIy—G—=Z—0.

The subgroup I'y is co-amenable in G since it is normal in G and G/Ty; ~ Z is
amenable. Therefore, we have G € A.
The Thurston’s virtual fibration conjecture states that [11]:

FEvery closed, irreducible, atoroidal 3-manifold M has a finite-sheeted
cover which fibres over the circle.

It follows from the conjecture that the fundamental group m (M) is in A since
it contains a finite index subgroup which is in A.
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