
EIGENVALUE ESTIMATE FOR THE ROUGH LAPLACIAN ON DIFFERENTIAL FORMS

BRUNO COLBOIS AND DANIEL MAERTEN

ABSTRACT. In this article, we study the spectrum of the rough Laplacian acting on differential forms on a
compact Riemannian manifold (M, g). We first construct on M metrics of volume 1 whose spectrum is as large
as desired. Then, provided that the Ricci curvature of g is bounded below, we relate the spectrum of the rough
Laplacian on 1–forms to the spectrum of the Laplacian on functions, and derive some upper bound in agreement
with the asymptotic Weyl law.

1. INTRODUCTION

Let (Mn, g) be a compact and connected Riemannian manifold and ∇ the Levi-Civita connection as-
sociated to the metric g. We consider the rough Laplacian Δ = ∇∗∇ acting on differential p–forms. If
∂M �= ∅, we add a boundary condition which is analogous to the Neumann boundary condition for func-
tions, namely the normal derivative ∇νω has to be zero at the boundary ∂M. In Section 4, we show in
detail and in a more general context (i.e. on any vector bundle) that, with this boundary condition, the
rough Laplacian is an order 2 elliptic operator and that its spectrum is an unbounded sequence of real
numbers (λk)k∈N which can be increasingly ordered

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ λk+1 ≤ · · · ↗ +∞ ,

where λ0 denotes the zero eigenvalue (which exists only when (Mn, g) has non zero parallel p–forms) with
its multiplicity (= dim Ker∇). In case where dim Ker∇ = 0, the spectrum conventionally starts with
λ1 > 0.

Despite its great importance in mathematics and in mathematical physics via the Laplace type opera-
tors (Dirac Laplacian, Hodge Laplacian on p–forms, Schrödinger operators) and the associated Bochner–
Weitzenböck formulas (cf. section 1.I. of [4] for instance), only a few general information are known about
the rough Laplacian, see however [1, 3, 6, 11, 13, 17].

A first natural question so as to understand the spectrum of an operator is to see if it is possible to con-
struct small or large eigenvalues under some usual geometric constraints, like fixed volume or bound on
the curvature. Let us recall a few known facts in the classical cases of the Laplacian acting on functions of
a closed Riemannian manifold.
What concern the upper bounds on the spectrum, in dimension higher than 2, a normalization of the vol-
ume is not enough to control the spectrum of the Laplacian acting on functions: indeed in virtue of the
result of Colbois and Dodziuk [7], one can find a metric of given volume, with arbitrary large first non–
zero eigenvalue. On the contrary, the knowledge of the volume is enough to give upper bound on the
spectrum of a surface depending on its genus (see [16] and the introduction of [8] for other results of this
type).
As regards the lower bounds on the spectrum, the classical example of the Cheeger dumbbell shows that
restriction on the volume is not enough to get a lower bound on the first non–zero eigenvalue. If we add
a lower bound on the Ricci curvature to the constraint on the volume, then there exists upper bound for
the spectrum of functions with respect to the volume [5, 18] and some lower bound with respect to the
diameter [18].
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The first main result of this article is that on any compact and connected manifold of dimension n ≥ 2,
it is possible to construct large eigenvalues for the rough Laplacian acting on differential p–forms (1 ≤ p ≤
n − 1) for a metric of prescribed volume.

Theorem 1.1. Every compact and connected manifold M (possibly with boundary) of dimension n ≥ 2 admits
metrics g of volume one with arbitrarily large first non–zero eigenvalue λ1 for the rough Laplacian on p-forms,
1 ≤ p ≤ n − 1.

In order to prove this result, we will construct a family of metrics ( g̃N)N∈N∗1 of volume 1 that do not
admit parallel p–forms (in other words the spectrum of these metrics starts with λ1(g̃N) > 0) and such that

lim
N→+∞

λ1(g̃N) = +∞. Another very interesting feature of this sequence of metrics is that the spectrum of

the Laplacian on functions (and, as a consequence, on 1–forms) collapses (if n ≥ 3) or is bounded (if n = 2)
as N → +∞ (cf. Remark 2.2). In particular, this singles out an essential and maybe unexpected spectral
difference between the two Laplacian type operators. It shows that, without assuming the Ricci curvature
is bounded below, controlling the spectrum of the Laplace Beltrami operator is not enough to bound from
above the spectrum of the rough Laplacian on 1–forms.
Almost the same arguments we use in the proof of Theorem 1.1 allow to construct small eigenvalues for
1–forms.

Theorem 1.2. Given N ∈ N∗ and ε > 0, every compact and connected manifold M (possibly with boundary) of
dimension n ≥ 2 admits metrics gN,ε of volume one with λN ≤ ε for the rough Laplacian on 1-forms.

The metrics we used for the proof of Theorem 1.1 have curvature not bounded below. This leads to the
conclusion that a natural assumption in order to bound from above the spectrum of the rough Laplacian,
is to suppose that the Ricci curvature is bounded below. Under this condition on the Ricci curvature, the
spectrum of the Laplacian acting on functions, with Neumann boundary conditions if ∂M �= ∅, that will
be denoted by

0 = μ1 < μ2 ≤ μ3 ≤ · · · ≤ μk ≤ μk+1 ≤ · · · ↗ +∞ ,

is known to be bounded from above, see [10]. The second main result of this note relates the spectrum of
the rough Laplacian on 1-forms with the spectrum of the Laplacian on functions, and, as a consequence,
allows to get upper bounds.

Theorem 1.3. Let (Mn, g) be a compact and connected manifold with Ricci curvature bounded below Ricg ≥ −(n − 1)a2,
a ≥ 0.

(i) If M is closed (∂M = ∅) then for any k ∈ N∗ we have

λk(M, g) ≤ a2(n − 1) + μk+1(M, g) .

(ii) If M has a compact and convex boundary in the sense that � the second fundamental form of ∂M is nonneg-
ative, then for any k ∈ N∗ we have

λk(M, g) ≤ a2(n − 1) + μk+1(M, g) .

In both case there exist geometric constants An, Bn > 0 (only depending upon the dimension) such that for any
k ∈ N∗

λk(M, g) ≤
(
(n − 1) + An

)
a2 + Bn

(
k + 1

V

)2/n

,

where V = Vol(M, g). In particular, we recover the Weyl asymptotic law.

The article is organized as follows: In Section 2, we give the proof of Theorem 1.1 and Theorem 1.2;
Section 3 is devoted of the proof of Theorem 1.3; Finally the last section is an appendix which provides the
detailed proof of the spectral theorem for the rough Laplacian acting on any vector bundle (also in case
where the boundary ∂M �= ∅).

1N∗ := N � {0} in the whole article.



2. CONSTRUCTION OF LARGE AND SMALL EIGENVALUES

The first goal of this section is the construction of a metric of volume 1 with large first eigenvalue on any
compact connected manifold. We do this in the same spirit of what Gentile and Pagliara did in [15], but
with a slightly different deformation.
Before to begin with the construction, let us point out that we use regularly the same fact along the con-
struction: if we take a domain U with smooth boundary in a manifold M, we can consider the boundary
problem { ∇∗∇ω = λω on U

∇νω = 0 on ∂U .
If we know a priori that 0 is not on the spectrum, this means that each p–form ω (which is not identically 0
on U) has a Rayleigh quotient

R(ω) =

∫
U |∇ω|2 dVolg∫

U |ω|2 dVolg
≥ λ1(U) > 0 .

A situation where we know a priori that 0 is not on the spectrum is if U is connected and has positive
constant sectional curvature in an open subset. To see this, we use the classical Weizenböck formula (see
for example [14], p.262)

〈Δω, ω〉 =
1
2

Δ(|ω|2) + |∇ω|2 + F(ω)

where F denotes the curvature tensor acting on p–forms.

If 0 is on the spectrum of U, there exists a parallel p–form ω, that is |∇ω| = 0. This implies that |ω| is
constant, so that Δ(|ω|) = 0 and because of Lemma 6.8 in [14], Δω = 0. But this is impossible, because on
the subset where the sectional curvature is positive and constant, the curvature tensor F is also positive,
and we cannot have F(ω) = 0.

We can now begin with our construction for the proof of Theorem 1.1.

Proof of Theorem 1.1. First, we consider a piece of the type C0 = [0, 5] × Sn−1 with an adapted warped
metric g0. We will then glue N ∈ N∗ of these pieces together to get a long periodic cylinder. We will close
it as in [15] with an hemisphere and consider a connected sum of it with M.
More explicitly, if we denote by (r, x) a point of C0, the metric g0 is such that for r ∈ [0, 1] or r ∈ [4, 5],
we get the Riemannian product of the interval with the sphere of radius 1 in Rn. This implies that the
boundary of (C0, g0) is totally geodesic.
For r ∈ [2, 3] × Sn−1, the metric g0 is such that we get a part isometric to{

(r, y) ∈ [2, 3] × Rn

∣∣∣∣∣
(

r − 5
2

)2

+ ‖y‖2 = 1

}
,

namely to a part of the round sphere of radius 1 in Rn+1. In this part, the sectional curvature of (C0, g0) is
1, and this will be useful in the sequel.

FIGURE 1. The piece (C0, g0).

For r ∈ [1, 2] or r ∈ [3, 4], we just choose the metric g0 to be globally smooth on C0.
Then, we glue in an obvious way N copies of (C0, g0) and we get a cylinder with a periodic metric denoted
by CN. The volume of CN is proportional to N. We close CN in one side with an hemisphere H of a
round sphere of radius 1 and get a Riemannian manifold denoted by DN , which is topologically a ball



of dimension n. We make a connected sum with the manifold M we are interested in, and get a resulting
manifold MN diffeomorphic to M with a submanifold Ω naturally identified with DN . We fix a Riemannian
metric gN on MN which coincides on Ω with the metric already constructed on DN , and which is fixed on
M � Ω (and so it is not depending on N). Moreover, on a fixed open set of M � Ω, we compel the metric
gN to have sectional curvature 1.
Clearly, the volume of MN := (M, gN) grows proportionally to N, and to conclude, it remains to show that
λ1(MN) is uniformly bounded below by a positive constant A. After renormalization to have a volume
1 metric, the first non–zero eigenvalue will increase to ∞ with N. The idea is the following: we see MN
as the union of its two extremities M � Ω and H, with the N fundamental pieces (C0, g0). We show that

any smooth p–form ω on MN has a Rayleigh quotient R(ω) =
∫

M |∇ω|2 dVolgN∫
M |ω|2 dVolgN

uniformly (that is to say

independently of N) bounded below on each of these parts, which implies a uniform lower bound on the
whole MN = (M, gN).

FIGURE 2. The manifold MN.

We now need a lemma:

Lemma 2.1. There exists a positive constant A1 such that for any smooth p–form ω on (C0, g0), we have∫
C0

|∇ω|2 dVolg0 ≥ A1

∫
C0

|ω|2 dVolg0(2.1)

Proof. On (C0, g0), we consider the rough Laplacian Δ = ∇∗∇ acting on differential p–forms, with the
Neumann condition boundary condition.
As observed, the presence of a portion of (C0, g0) with constant curvature 1 insures the first eigenvalue of
Δ is strictly positive, say greater or equal to some constant A1 > 0.
The form ω we consider may be seen as a test form for the Rayleigh quotient, and R(ω) has to be greater
than A1. �

Now, we can conclude the proof Theorem 1.1: let ω be any smooth p–form on MN . We have∫
CN

|∇ω|2 dVolgN ≥ A1

∫
CN

|ω|2 dVolgN ,(2.2)

because this is true by Lemma 2.1 for all components C0 of CN.
Moreover, the same is true, with a positive constant A2 on the hemisphere H which is of constant curvature
1, and it is also true on (M � Ω, g) with a constant A3 > 0: the reason is that gN is fixed on M � Ω and has
a sectional curvature 1 on an open set, so that parallel p–forms cannot exist.
We conclude by choosing A = min(A1, A2, A3) > 0: we have shown that for each smooth ω we have
R(ω) ≥ A which implies for any N ∈ N∗, λ1(MN , g) ≥ A > 0 by Theorem 4.5. �

Remark 2.2. Note that the family of metrics (M, gN)N∈N∗ has small eigenvalues for functions (and so for the
Laplace-Beltrami operator on 1–forms) if n ≥ 3 and that the eigenvalues have uniform upper bounds if n = 2. Let us
take some k ∈ N∗ and consider the family of metrics (M, gkN)N∈N∗ . We have Vol(M, gkN) = V0 + kN Vol(C0, g0)



for a certain positive V0. We denote by fk the plateau function which is 0 outside the k–th piece CN and goes linearly
to 1 inside the k–th CN, and we use the family ( fk)k as test functions for the Rayleigh quotient:

R( fk) ≤ 2 Vol(Sn−1)
N Vol(C0, g0)

,

and since ( fk)k is an H1–orthogonal family (as functions with disjoint support), the MinMax principle asserts that

μk(gkN) ≤ 2 Vol(Sn−1)
N Vol(C0, g0)

.

Now if we denote by (M, g̃kN)N∈N∗ the family of normalized metrics with volume 1, it follows that

μk(g̃kN) ≤
2 Vol(Sn−1)

(
V0 + kN Vol(C0, g0)

) 2
n

N Vol(C0, g0)
∼

N→∞
2 Vol(Sn−1) Vol(C0, g0)

2
n−1k

2
n N

2
n−1 ,

which implies lim
N→∞

μk(g̃kN) = 0 for any k ∈ N∗ and for any dimension n ≥ 3. In dimension 2, this limit is a priori

only bounded in N. This behavior points out the essential difference between the spectrum of the rough Laplacian and
the spectrum of the Laplacian on functions, since we have proved above that lim

N→∞
λk(g̃kN) = +∞ for any k ∈ N∗

and for any dimension n ≥ 2.

Proof of Theorem 1.2. As in Theorem 1.1, we will consider the connected sum of a ball with the given
manifold M endowed with a metric of volume 1

2 , but the construction is much simple. We just have to
consider a Riemannian product which is a cylinder CL = [0, L] × Sn−1

1/L , where Sn−1
1/L is the sphere of radius

1/L in Rn−1 that we close at one side with an hemisphere of the round sphere S n
1/L of radius 1/L. As L is

large, the volume of CL goes to zero, and so is less that 1
2 , so that we get a family of manifolds (ML)L with

volume less than 1.

FIGURE 3. ML the connected sum of M with a slim long nose.

To construct small eigenvalues on ML, it suffices to construct N ∈ N∗ disjointly supported test 1–form
denoted by ω1, ..., ωN with Rayleigh quotient R(ωi) ≤ ε where ε > 0 is a small fixed positive real. So let us
fix N ∈ N∗ and ε > 0.
In order to construct our test 1–forms, we denote by g L = dr2 + gSn−1

1/L
the product metric on the cylin-

der CL = [0, L] × Sn−1
1/L � (r, x), and we consider the regular subdivision of step L

N of [0, L] by setting
Ik =

[
(k − 1) L

N , k L
N

]
for any k ∈ {1, 2, · · · , N}. Now we set for any k

fk =
{

sin
( 2πN

L

[
r − (k − 1) L

N

])
on Ik × Sn

1/L
0 on ML � (Ik × Sn

1/L)
,

and also

ωk :=
{

fkdr on Ik × Sn
1/L

0 on ML � (Ik × Sn
1/L)

.

The family of 1–forms ω1, ..., ωN is disjointly supported (and so is an H1–orthogonal family) and satisfies
(since dr is a parallel 1–form)

∇ωk =
{ 2πN

L cos
( 2πN

L

[
r − (k − 1) L

N

])
dr2 on Ik × Sn

1/L
0 on ML � (Ik × Sn

1/L)
.



Since our test forms only depend upon r, their Rayleigh quotient is nothing but

R(ωk) =

∫
Ik
|d fk|2∫
Ik

f 2
k

=
(

2πN
L

)2 ∫ 2π
0 cos2(t)dt∫ 2π
0 sin2(t)dt

=
(

2πN
L

)2

.

Using Theorem 4.5, we deduce λN ≤ ( 2πN
L

)2 −→
L→∞

0 and consequently λN ≤ ε for L large enough. �

3. RICCI CURVATURE AND UPPER BOUND FOR THE SPECTRUM

In this section, we study the spectrum of the rough Laplacian on differential 1–forms (or equivalently
on vector fields) on a compact manifold (Mn, g) with Ricci curvature bounded below Ricg ≥ −(n − 1)a2,
a ≥ 0. In the following, μk(M, g) (or μk in short, k ≥ 1) denotes the k–th eigenvalue of the closed or
Neumann problem on M (depending on whether the boundary ∂M is empty or not).

Theorem 3.1. Let (Mn, g) be a compact manifold with Ricci curvature bounded below Ricg ≥ −(n − 1)a2, a ≥ 0.
(i) If M is closed (∂M = ∅) then for any k ∈ N∗ we have

λk(M, g) ≤ a2(n − 1) + μk+1(M, g) .

(ii) If M has a compact and convex boundary in the sense that � the second fundamental form of ∂M is nonneg-
ative, then for any k ∈ N∗ we have

λk(M, g) ≤ a2(n − 1) + μk+1(M, g) .

In both case there exist geometric constants An, Bn > 0 (only depending upon the dimension) such that for any
k ∈ N∗

λk(M, g) ≤
(
(n − 1) + An

)
a2 + Bn

(
k + 1

V

)2/n

,

where V = Vol(M, g). In particular, we recover the Weyl asymptotic law.

Proof. We make the proof when the boundary is not empty (if it is not the case, just drop the boundary
integrals in the integration by parts we will write below). Let us denote by ( fi, μi)

k+1
i=1 the (k + 1) first

eigenfunctions for the Neumann problem with their respective eigenvalues. We normalize the family of
exact 1–forms (αi := d fi)k+1

i=2 such that it is L2–orthonormal (notice that α1 ≡ 0) i.e.

∀i, j ∈ {2, 3, · · · , k + 1}
∫

M

〈
αi, αj

〉
dVolg =

∫
M

〈∇ fi,∇ fj
〉

dVolg = δij .

We apply the Bochner formula ∇∗∇d f = d(Δ f ) − Ricg(d f ) (cf. the proof of Proposition 4.15 in [12]) to a

linear combination of the fi that is for f =
k+1
∑
i=1

βi fi (or if you prefer to a linear combination of the αi). On the

one hand, it comes out

∇∗∇d f = d

(
Δ

(
k+1

∑
i=1

βi fi

))
− Ricg(d f ) =

k+1

∑
i=2

βiμid fi − Ricg(d f ) ,

which leads thanks to integration to the estimate∫
M
〈∇∗∇d f , d f 〉 dVolg =

k+1

∑
i,j=2

μiβiβ j

∫
M

〈∇ fi,∇ fj
〉

dVolg −
∫

M
Ricg(d f , d f ) dVolg

=
k+1

∑
i=2

μiβ
2
i −

∫
M

Ricg(d f , d f ) dVolg

≤ μk+1

(
k+1

∑
i=2

β2
i

)
+ a2(n − 1) ‖∇ f‖2

L2

≤
(

μk+1 + a2(n − 1)
)
‖∇ f‖2

L2 ,



where we have used that ‖∇ f‖2
L2 =

k+1
∑
i=2

β2
i . On the other hand, integration by parts gives (ν is the outward

unit normal of ∂M)∫
M
〈∇∗∇d f , d f 〉 dVolg =

∫
M

∣∣∇2 f
∣∣2 dVolg −

∫
∂M

〈∇ν∇ f ,∇ f 〉 dVolg,∂M

=
∫

M

∣∣∇2 f
∣∣2 dVolg −

∫
∂M

Hessg f (ν,∇ f ) dVolg,∂M .

In order to estimate the boundary integral, we note that along ∂M (keep in mind that f satisfies the Neu-
mann boundary condition)

Hessg f (ν,∇ f ) = ∇ f · ( d f (ν)︸ ︷︷ ︸
≡0 on ∂M

)− d f (∇∇ f ν) = −�(∇ f ,∇ f ) ,

where the second fundamental form is defined as � = ∇ν with ν the outward unit normal to ∂M (this
convention makes the unit Euclidean ball a domain with strictly convex boundary in the sense that its
second fundamental form is positive). Thus, if � is nonnegative we obtain∫

M
〈∇∗∇d f , d f 〉dVolg =

∫
M

∣∣∇2 f
∣∣2 dVolg +

∫
∂M

�(∇ f ,∇ f ) dVolg,∂M

≥ ∥∥∇2 f
∥∥2

L2 ,

which reveals thanks to our first estimate∥∥∇2 f
∥∥2

L2 ≤
∥∥∇2 f

∥∥2
L2 +

∫
∂M

�(∇ f ,∇ f ) =
∫

M
〈∇∗∇d f , d f 〉 ≤

(
μk+1 + a2(n − 1)

)
‖∇ f‖2

L2 .

Therefore we control the Rayleigh quotient of d f since

R(d f ) =

∫
M

∣∣∇2 f
∣∣2∫

M |∇ f |2 ≤ μk+1 + a2(n − 1) .

As a conclusion, we control the Rayleigh quotient of any 1–form in the k–dimensional vector subspace of
H1 spanned by the family (αi)k+1

i=2 , and thanks to the MinMax principle (cf. (ii) of Theorem 4.5 Section 4 for
details) we get that

λk(M, g) ≤ μk+1(M, g) + a2(n − 1) .
The last upper bound in the theorem follows from the Weyl–compatible estimate of μk in Theorem 1.3
proved in [10]. �

Remark 3.2. In [13], Gallot and Meyer proved a general (i.e. without any assumption on the curvature) bound from
below for the spectrum of the rough Laplacian acting on any Riemannian vector bundle E → M, using the Neumann
spectrum on the basis manifold (Mn, g). More precisely, they showed the following lower bound in case of E = T∗M

∀k ∈ N∗ λk(n+1) ≥ μk+1 .

In particular, when the Ricci curvature is bounded below Ricg ≥ −(n − 1)a2, a ≥ 0, this provides the inequality

∀k ∈ N∗ μk+1 ≤ λk(n+1) ≤ μk(n+1)+1 + a2(n − 1) .

4. APPENDIX: SPECTRAL THEOREM FOR THE ROUGH LAPLACIAN

In this section, we prove that the spectrum of the rough Laplacian Δ := ∇∗∇ (which is an order 2 elliptic
operator) on (Mn, g) a compact manifold with or without boundary, is an unbounded sequence of real
numbers (λk)k∈N which can be increasingly ordered

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ λk+1 ≤ · · · ↗ +∞ ,

where λ0 denotes the zero eigenvalue (which is possible only when (Mn, g) has non zero parallel 1–forms)
with its multiplicity (= dim Ker∇). In case where dim Ker∇ = 0, the spectrum conventionally starts with
λ1 > 0.
We have decided to give the proof of the spectral theorem for the rough Laplacian in this article since we
could not find a good reference where the details were carried out when the boundary of M is not empty.



We will follow the arguments of [2] step by step in the context of the rough Laplacian on sections of any
vector bundle E which is endowed with a metric compatible connection ∇.
The rough Laplacian acting on E is defined by the relation

Δ = ∇∗∇ = −
n

∑
i=1

∇2
ei ,ei

= −
n

∑
i=1

(
∇ei∇ei −∇Dei ei

)
,

where (ei)
n
i=1 is a local orthonormal basis and D is the Levi-Civita connection of (Mn, g) (remark that

D = ∇ in the previous Sections 1, 2 and 3 since we worked on the tensorial bundle of 1–forms; it is not the
case a priori on a general vector bundle E). Now for every sections σ, τ ∈ Γ(E), we can define a 1–form
θ(X) = 〈∇Xσ, τ〉 for any vector field X ∈ Γ(TM). In order to compute the divergence of θ, choose an
orthonormal basis (ei)

n
i=1 satisfying Deiej = 0 at the point of computation. Then

div θ = −
n

∑
i=1

ei · 〈∇ei σ, τ〉 = −
n

∑
i=1

〈∇ei∇ei σ, τ〉 + 〈∇eiσ,∇ei τ〉

= 〈Δσ, τ〉 − 〈∇σ,∇τ〉 .

Applying Stokes’ formula to θ, we get (remind that ν is the outward unit normal of ∂M)∫
M
〈Δσ, τ〉 =

∫
M
〈∇σ,∇τ〉 −

∫
∂M

〈∇νσ, τ〉 .

The eigenvalue problem for the rough Laplacian consists on finding a couple (λ, σ) ∈ R × Γ(E) such that

(P)
{

Δσ = λσ on M
∇νσ = 0 on ∂M ,

where the second equation (which is the analogous version of Neumann’s boundary condition for sections
of E) holds only if the boundary ∂M �= ∅. When ∂M = ∅ we will talk about the closed eigenvalue problem,
whereas if ∂M �= ∅ we will talk about the Neumann eigenvalue problem.
The first result of this section deals with the good regularity property of the boundary problem (P) when
∂M �= ∅.

Lemma 4.1. Let (Mn, g) be a compact and connected manifold with smooth and compact non–empty boundary ∂M.
Then the boundary problem (P) is regular elliptic.

Proof. We use the notations and terminology of [19], and apply Proposition 11.8 in [19] (p. 389). Let us fix
some p ∈ ∂M (if p lives on the interior of M then regularity is automatic) that we denote by p = (x, y)
where x = (x1, x2, · · · , xn−1), y = xn in normal coordinates. These normal coordinates are chosen such
that ν = ∂y, and thereby the frozen coefficients problem associated to (P) is the following Cauchy ODE on
some Φ ∈ C∞([0, ∞[, Rr)

(Frozen)

⎧⎨⎩
(

d2

dy2 − gp(ξ, ξ)
)

Φ(y) = 0(
dΦ
dy

)
|y=0

= 0
,

where r is the rank of E, ξ is any non–zero vector of Rn−1, and gp(ξ, ξ) =
n−1
∑

j,k=1
gjk(p)ξ jξk. Let us suppose that

Φ is a bounded solution of (Frozen), then any component Φs of Φ can be written as Φs : y �→ Ks e−y
√

gp(ξ,ξ),

for some constant Ks ∈ R. The Cauchy data on Φ (i.e. its initial value) gives −Ks

√
gp(ξ, ξ) = 0. But the

metric g is positive definite and ξ �= 0, which implies Ks = 0 for any s. We conclude that the frozen coeffi-
cients problem associated to (P) does not have non–zero bounded solution, which is a criterion for elliptic
regularity. �

Definition 4.2. The functional space H1(E) or shortly H1 is defined as the completion of C∞(E) = Γ(E) (space of
smooth sections of E) for the norm

‖σ‖1 :=
(
‖σ‖2

L2(M) + ‖∇σ‖2
L2(M)

)1/2
.

H1 is the so called Sobolev space of sections of E.



We naturally have a continuous inclusion H1 ↪→ L2 since for every sections σ ∈ H1 we have ‖σ‖L2 ≤
‖σ‖1. It will be a crucial point that this inclusion is in fact more than continuous.

Theorem 4.3. The natural inclusion H1 ↪→ L2 is compact.

This fact is standard and has been proved for manifolds (possibly with boundary) in Section 4 of [19] for
instance. Since Δ is formally self adjoint its spectrum is clearly contained in [0, ∞[. We now state the main
result of this section (where the eigenvalues are not repeated with their multiplicity on the contrary of our
usual convention).

Theorem 4.4 (Spectral Theorem). Let (Mn, g) be a compact manifold and E a vector bundle over M.
(i) The spectrum (i.e. set of eigenvalues) of Δ (for the closed eigenvalue problem or for the Neumann eigenvalue

problem) is an unbounded sequence of real numbers (λk)k∈N which can be increasingly ordered

0 = λ0 < λ1 < · · · < λk < λk+1 < · · · ↗ +∞ ,

with the following convention: λ0 is the zero eigenvalue with multiplicity dim Ker∇; In case where there
is no parallel section i.e. dim Ker∇ = 0, the spectrum starts with the positive eigenvalue λ1.

(ii) Each eigenvalue λi has finite multiplicity and the eigenspaces Eλi corresponding to distinct eigenvalues are
L2–orthogonal.

(iii) The direct sum of the eigenspaces is dense in L2.

Proof. We consider R(σ) =
∫

M |∇σ|2 dVolg∫
M |σ|2 dVolg

the Rayleigh quotient on M with respect to the metric g which is

defined for any section σ ∈ H1 such that ‖σ‖L2 �= 0. In order to prove our spectral theorem we consider
the extrema of R on H1 or equivalently on C∞.
Let us define E0 :=

{
σ ∈ H1

� {0}|R(σ) = 0
}∪ {0} = Ker∇ which is clearly a finite dimensional vectorial

subspace of H1. Obviously any section σ ∈ E0 satisfies the zero eigenvalue problem. Notice that

(4.1) ∀σ ∈ E0 ∀τ ∈ H1 〈σ, τ〉1 = 〈σ, τ〉L2 ,

where 〈 , 〉1 is the scalar product induced by the norm ‖ ‖1. The convention we have adopted allows E0 to
be trivial which means 0 is not an eigenvalue of the rough Laplacian.
We now have to define the orthogonal subspace H0 =

{
τ ∈ H1|∀σ ∈ E0 〈σ, τ〉1 = 0

}
and analogously

L0 =
{

τ ∈ L2|∀σ ∈ E0 〈σ, τ〉1 = 0
}

. Thanks to Equation (4.1), we have H0 = L0 ∩ H1 and so the inclusion
H0 ↪→ L0 is compact by Theorem 4.3. We set

λ1 = inf {R(σ) |σ ∈ H0, ‖σ‖L2 �= 0} .

This infimum exists since R is nonnegative on H0 and we denote by (σn)n∈N a minimizing sequence in H0

for λ1 which has unit L2–norm. We clearly have by definition

‖σn‖2
1 = R(σn) + 1 n→∞−→ 1 + λ1 ∈ [1, ∞[ ,

and so (σn)n∈N is bounded in H0. Since the inclusion H0 ↪→ L0 is compact, we can suppose (up to extract a
subsequence) there exist some σ ∈ H0 such that

σn
L2−→ σ, and σn

H1

⇀ σ .

By using the Cauchy–Schwarz inequality for the scalar product 〈 , 〉1 we get

∀τ ∈ H1 〈σn, τ〉2
1 ≤ ‖σn‖2

1 ‖τ‖2
1 = (R(σn) + 1) ‖τ‖2

1 = (λ1 + 1 + εn) ‖τ‖2
1 ,

where εn
n→∞−→ 0. By weak convergence in H1 of σn toward σ we obtain

∀τ ∈ H1 〈σ, τ〉2
1 ≤ (λ1 + 1) ‖τ‖2

1 ,

which leads for τ = σ,
‖σ‖2

1 ≤ 1 + λ1 ⇐⇒ R(σ) ≤ λ1 ,

and as a consequence R(σ) = λ1. In particular λ1 is achieved on H0 and thereby is positive. We set

E1 = {σ ∈ H0 � {0} |R(σ) = λ1 } ∪ {0} .



Let us take some σ ∈ E1 and any τ ∈ H0, then for any t ∈ R small enough we have r(t) := R(σ + tτ) ≥
R(σ) = λ1. It follows

0 = r′(0) = 2 〈σ, τ〉1 ‖σ‖−2
L2 − 2 〈σ, τ〉L2 ‖σ‖2

1 ‖σ‖−4
L2

= 2 ‖σ‖−2
L2

(
〈σ, τ〉1 − 〈σ, τ〉L2 (R(σ) + 1)

)
= 2 ‖σ‖−2

L2

(
〈σ, τ〉1 − 〈σ, τ〉L2 (λ1 + 1)

)
,

and we deduce:

(4.2) ∀σ ∈ E1 ∀τ ∈ H0, 〈σ, τ〉1 = (λ1 + 1) 〈σ, τ〉L2 .

Therefore, E1 is a real vector space of finite dimension (from Theorem 4.3 the closed unit ball of E1 is
compact and the conclusion follows from the Riesz theorem). It is clear that any τ ∈ E1 is a weak solution of
the eigenvalue problem, but by classical elliptic regularity result of Lemma 4.1, it comes out that E1 ⊂ C∞,
and moreover

1. when M is closed, we have Δτ = λ1τ.
2. when ∂M �= ∅, we have Δτ = λ1τ on M and ∇ντ = 0 on ∂M.

Let us denote by L1 and H1 the orthogonal spaces of E1 in respectively L2 and H1. By Equation (4.2), we
have that H1 ↪→ L1 is a compact inclusion (still because of Theorem 4.3). We now set

λ2 = inf {R(σ) |σ ∈ H1, ‖σ‖L2 �= 0} .

Following exactly the same arguments as for λ1 we get that λ2 is achieved on a finite dimensional vector
subspace E2 ⊂ H1 which is characterized by the relation

(4.3) ∀σ ∈ E2 ∀τ ∈ H1, 〈σ, τ〉1 = (λ2 + 1) 〈σ, τ〉L2 .

By construction λ2 > λ1, and still by elliptic regularity argument we have E2 ⊂ C∞. By induction, we
obtain a sequence (λi, Ei)i≥1 of eigenvalues and finite dimensional eigenspaces (which are L2 orthogonal
by construction).
Let us prove by contradiction that lim

k→∞
λk = +∞. So let us suppose that (λ i)i is bounded by some λ > 0

then there exists an infinite sequence of L2–orthonormal sections (σi)i such that: ∀i ∈ N∗, ‖σi‖2
1 ≤ 1 + λ.

But it is not possible because of Theorem 4.3. We then have proved (i), (ii) and we let the proof of (iii) to
the reader. �

We have the following unique L2–decomposition H1 = H̃1 ⊕ {
σ ∈ H1 |∇σ = 0

}
(it is possible that

H1 = H̃1 depending on the vector bundle E → M under consideration). There exist some variational
characterizations of the spectrum which can be proved exactly in the same way as in [2] (that is why we
omit the proof of the following result).

Theorem 4.5 (MaxMin and MinMax). Let λk the k–th eigenvalue , k ≥ 1 (here each eigenvalue is repeated with
multiplicities) of the closed or the Neumann eigenvalue problem on a compact Riemannian manifold (Mn, g). Then
the following variational characterizations hold:

(i) MaxMin Principle:

λk = sup
Ek−1

inf
{

R(σ)
∣∣∣σ �= 0, σ ∈ E⊥

k−1

}
,

where Ek−1 runs through the (k − 1)–dimensional vectorial subspaces of H̃1 (or C̃∞), and where ⊥ means
the L2–orthogonal space.

(ii) MinMax Principle:
λk = inf

Lk
sup {R(σ) |σ �= 0, σ ∈ Lk } ,

where Lk runs through the k–dimensional vectorial subspaces of H̃1 (or C̃∞).
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