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Abstract

Let Mn = (M, g) be a compact, connected Riemannian manifold of dimension n and µ the measure
µ = σdvolg where σ ∈ C∞(M) is a non-negative density. We first show that, under some mild metric
conditions which do not involve the curvature, the presence of a large eigenvalue (or more precisely
of a large gap in the spectrum) for the Laplacian associated to the density σ on M implies a strong
concentration phenomenon for the measure µ. When the density is positive, we show that our result
is optimal. Then we investigate the case of a Laplace-type operator D = ∇∗∇+T on a vector bundle
E over M , and show that the presence of a large gap between the (k+1)-th eigenvalue λk+1 and
the k-th eigenvalue λk implies a concentration phenomenon for the eigensections associated to the
eigenvalues λ1, ..., λk of the operator D.
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1 Introduction

The goal of this paper is to show that, under some mild metric conditions, the presence
of a large eigenvalue of the Laplacian ∆ on a compact Riemannian manifold M implies
that the Riemannian volume concentrates around a finite set of points. Actually, we show
that a similar phenomenon holds for any Laplace type operator D acting on sections of
a vector bundle on M , if one replaces the Riemannian volume by the squared norm of a
first eigensection of D.

Let us recall briefly the main known facts about concentration and the spectrum of the
Laplace operator. In what follows, we number the eigenvalues of ∆ so that λ1(M) = 0
and λ2(M) is the first positive eigenvalue.

For a closed Riemannian manifold of dimension n whose Ricci curvature is bounded
below: Ric ≥ −(n−1)a2, we have the following well-known inequality due to Cheng [Che]:

λk+1(M) ≤ (n− 1)2a2

4
+

c(n)k2

diam(M)2
(1)

where c(n) is a constant depending only on n. This shows that when the k-th eigenvalue
is very large the whole manifold is contained in a small neighborhood of any of its points
and so we have a strong concentration phenomenon.
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At the other extreme, if we make no assumption other than compactness we still have
a concentration phenomenon, first observed by Gromov and Milman (Theorem 4.1 in
[GM]). It says that if A is a closed subset with positive normalized measure µ(A) = α
and r > 0, then:

µ(Ar) ≥ 1− (1− α2) exp(−r
√
λ2(M) ln(1 + α)), (2)

where
Ar = {x ∈M : d(A, x) < r}.

So, when the first (positive) eigenvalue is large, almost all relative volume of M lies in
a small neighborhood of any set of fixed positive measure.

However, we need to stress that the assumption that µ(A) is positive is essential in
the estimate; the sole assumption that λ2(M) is large does not guarantee that the volume
concentrates around, say, a finite set of points. For example, take Mn to be the n-th
dimensional unit sphere. Then λ2(Mn) (which is equal to n) tends to infinity with n;
we have concentration in the sense of Gromov-Milman, and yet the volume of Mn is
uniformly distributed and cannot concentrate around any finite set. In section 4.4 we will
give another counterexample in which the dimension is fixed.

Inequality (2) can be generalized to the other eigenvalues using an interesting upper
bound of λk(M) due to Chung, Grigor’yan and Yau; the upper bound is given in terms
of the least distance between k mutually disjoint subsets of fixed positive measure (see
[CGY2] and also [FT] for a sharp estimate).

The present paper deals with concentration around a finite number of points, and with
a simple metric condition which will imply this phenomenon. Namely, we require that
the number of balls of radius r needed to cover a ball of radius 4r is uniformly bounded
above by a constant C for r ≤ 1. We then prove the following fact:

If the (k + 1)-st eigenvalue of the Laplacian of M is large, then most of the volume of
M concentrates near (at most) k points of the manifold.

However, we will prove a result (Theorem 4) which is much more general; in particular,
it will imply the following fact. Consider a Laplace-type operator D acting on the sections
of a smooth vector bundle on M (for example, the Laplacian on forms, the square of the
Dirac operator or the Schroedinger operator). Then:

If the gap between the (k + 1)-th and the first eigenvalue of D is large, then any first
eigensection concentrates its L2-norm near (at most) k points of the manifold.

Both the above estimates depend explicitly on the constant C.
In the rest of the Introduction we state the precise results: Theorems 1, 2 and 3.

1.1 Some definitions

In this paper we will consider metric measure spaces (M,µ, d) of the following type:
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1) M = (Mn, g) is a compact, connected Riemannian manifold of dimension n, possibly
with non-empty boundary.

2) µ is the measure µ = σdvolg where σ ∈ C∞(M) is a non-negative density. We will also
assume, without loss of generality, that µ is a probability measure, that is,

∫
M
σdvolg = 1.

3) d is a distance function which is assumed to be Lipschitz, i.e. |∇d| ≤ 1 a.e. with
respect to µ.

For r > 0, define Cd(M, r) to be the minimal number of balls of radius r in (M,d)
needed to cover a ball of radius 4r. Then Cd(M, r) is finite for all r.

We will set:
Cd(M) = sup

r∈(0,1]

Cd(M, r), (3)

and call it the packing constant of the pair (M,d): it is a metric invariant (it does not
depend on the measure µ).

The packing constant is often used in similar contexts (see the survey [GNY], where it
is used extensively). By the compactness of M , Cd(M) is well defined.

Note that d is not necessarily the Riemannian distance. In fact, here are three typical
situations in which it is easy to control the packing constant:

I. (Mn, g) is a closed Riemannian manifold and d is the intrinsic distance on M associated
to the Riemannian metric g.

II. Mn is an immersed submanifold of another manifold X (for example, Euclidean space
or hyperbolic space) and d = dext is the extrinsic distance, that is, the restriction to M
of the Riemannian distance on X.

III. Mn is a bounded domain with smooth boundary in a complete Riemannian manifold
X and again d = dext is the extrinsic distance.

In the first case we can easily estimate the packing constant in terms of a lower bound
of the Ricci curvature and the dimension, using the Bishop-Gromov inequality (see [CM],
Example 2.1). In cases II and III, a simple argument shows that Cd(M) ≤ Cd(X)2, and
so the packing constant of an immersed submanifold of Euclidean or hyperbolic space
is bounded above by an absolute constant depending only on the dimension of X; in
particular, it is independent on the Ricci curvature of M . For example, if M is any
submanifold of Rm then Cd(M) ≤ (1 + 32m)2 (we stress that here d is the extrinsic
distance; for the intrinsic distance this is no longer true in general).
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1.2 Estimates for the Laplacian on functions

When the density σ > 0 we can consider the following operator L acting on C∞(M):

Lu = ∆u− 1

σ
〈∇u,∇σ〉, (4)

for all u ∈ C∞(M). If ∂M 6= ∅, we assume Neumann boundary conditions. L is self-
adjoint when acting on L2(M,µ), where µ = σdvolg, and is associated to the quadratic
form

u 7→
∫
M

|∇u|2σdvolg.

The spectrum of L is discrete and will be denoted by {λk(L)}∞k=1. Note that λ1(L) = 0
and λ2(L) > 0. If σ is constant (that is, µ is just a multiple of the Riemannian measure)
one recovers the eigenvalues of the ordinary Laplacian on M . However, the generalization
to Laplace-type operators will force us to consider non-constant densities.

Theorem 1. LetM = (M,µ, d) be a metric measured space as defined in Section 1.1 and
assume that µ = σdvolg with σ > 0 everywhere on M . Let L be the operator defined in
(4). Then, for all k ≥ 1, there exists a set S of k points x1, . . . , xk ∈M with the following
property. If

r = 8(k + 1)Cd(M)2 · log λk+1(L)√
λk+1(L)

then we have
µ(Sr) ≥ 1− r.

provided that λk+1(L) ≥ e. Here Cd(M) is the packing constant defined in (3).

• The estimate is sharp, in the sense that the decay
log λ√
λ

is optimal as λ = λk+1(L)

tends to infinity, and cannot be replaced by a function with a faster rate of decrease. We
refer to Section 4 for an explicit example.

• If the eigenvalue λk+1(L) is large (so that r is small) then we see that almost all
the measure µ is in the r-neighborhhood of k suitable points: this is the concentration
property that we want to emphasize.

• It is perhaps worth mentioning that there is an equivalent formulation of our es-
timate in terms of the so-called Levy-Prokhorov distance between probability measures.
Let us recall its definition. If (X, d) is a metric space, B(X) the borelian σ-algebra and
P(X) the set of the probability measures on X, the Levy-Prokhorov distance dP between
two elements ν1 and ν2 of P(X) is:

dP (ν1, ν2) = inf{r > 0 : ν1(C) ≤ ν2(C
r) + r and ν2(C) ≤ ν1(C

r) + r for all C ∈ B(X)}.
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See for example [V] (6.5) page 97.

The following result is an equivalent formulation of Theorem 1.

Theorem 2. In the hypothesis of Theorem 1 there exist k points x1, . . . , xk ∈ M and
weights p1, . . . , pk ∈ [0, 1) such that

∑
pj = 1 and

dP (µ, δS) ≤ 8(k + 1)Cd(M)2 · log λk+1(L)√
λk+1(L)

,

where δS =
∑k

i=1 piδxi and δxi is the Dirac measure concentrated at the point xi.

In particular, for k = 1: there exists a point x1 ∈M such that

dP (µ, δx1) ≤ 16Cd(M)2 · log λ2(L)√
λ2(L)

.

The estimate is sharp: see Section 4.2.

In other words, when the eigenvalue is large, the measure µ is close, in the Levy-
Prokhorov sense, to a weighted linear combination of the Dirac measures at the points
x1, . . . , xk.

The equivalence between the formulations in Theorem 1 and Theorem 2 will be proved
in Section 4.1.

• Note that Theorems 1 and 2 apply obviously to the Laplacian acting on functions: it
suffices to choose σ = 1

Vol(M)
. In that case the concentration is relative to the (normalized)

Riemannian volume.

1.3 Estimates for vector bundle Laplacians

The next task is to generalize Theorem 1 when the density σ is only assumed to be non-
negative. For that purpose we introduce, in section 2, a weaker notion of spectrum and
prove the relevant Theorem 4. Besides being interesting in itself, Theorem 4 will lead
to a concentration phenomenon of eigensections in the context of Laplacians acting on
sections of a vector bundle.

So, consider a vector bundle E over a compact Riemannian manifold (Mn, g) with
empty boundary, and denote by ∇ a connection on E which is compatible with the
metric g (see [B] for details). An operator D acting on sections of the bundle is said to
be of Laplace type if it can be written

D = ∇∗∇+ T,
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where T is a symmetric endomorphism of the fiber. Then, D is self-adjoint and elliptic.
We list its eigenvalues as

λ1(D) ≤ λ2(D) ≤ · · · ≤ λk(D) ≤ . . .

and denote by {ψ1, ψ2, . . . } a corresponding orthonormal basis of eigensections.
Important examples of Laplace-type operators are given by the Laplacian acting on

differential forms, by the square of the Dirac operator and by a Schroedinger operator
acting on functions. In the first case T is the curvature term in the classical Bochner-
Weitzenboeck formula, in the second case it is multiplication by a constant multiple of
the scalar curvature and in the third case T is just the potential.

In the second main theorem we assume a large gap in the spectrum of D and prove
that eigensections concentrate their norms near a finite set of points.

Theorem 3. For each positive integer k there exist a set S of k points x1, . . . , xk ∈ M
with the following property. Let ψ be any unit L2-norm linear combination of the first k

eigensections of D, and µ = |ψ|2dvolg. If r = 25k

(
k2(k + 1)Cd(M)2

λk+1(D)− λk(D)

)1/3

then

µ(Sr) ≥ 1− r.

Equivalently, the Levy-Prokhorov distance between µ and a suitable linear combination of
the Dirac measures at x1, . . . , xk is bounded above by r.

Example. We take D to be the ordinary Laplacian on functions and assume that λk+1

tends to infinity while λk is uniformly bounded. Then we know from Theorem 1 that the
Riemannian volume concentrates around k suitable points x1, . . . , xk. Theorem 3 then
says that any eigenfunction associated to eigenvalues less than λk+1 will also concentrate
its L2-norm around x1, . . . , xk.

Example. We take D to be the Laplacian acting on p-forms and assume that the p-th
Betti number of M is positive, say bp(M) = k > 0. Then λk(D) = 0 and λ = λk+1(D)
is the first positive eigenvalue of D. Assume that λ is very large. Then the theorem
gives the existence of bp(M) points such that all harmonic p-forms must concentrate their
L2-norms in a small neighborhood of the union of these points.

We also observe that, in general, a large gap in the spectrum of D does not necessar-
ily imply concentration of the Riemannian volume unless, of course, D is the ordinary
Laplacian, or there exist parallel sections (so that the density σ = |ψ|2 is constant). We
refer to Section 4.3 for an explicit example.

Plan of the sections. The paper is structured as follows: in Section 2 we will prove
Theorems 1 and a more general version of it, Theorem 4. In Section 3 we will establish the
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results for vector bundle Laplacians and prove Theorem 3. Sections 4 is devoted to the
examples, in particular, the sharpness of the estimate given in Theorem 1 and Theorem
2.

2 Estimates for functions

2.1 A general estimate when the density is only non-negative

We consider a compact manifold M (with or without boundary) endowed with a distance
function d and a measure µ = σdvolg as in Section 1.1. We first consider the general case
in which σ ≥ 0: this will be needed to treat Laplace-type operators, where the density
σ will be the squared norm of an eigensection, which can vanish at some points of M .
However it is well-known from elliptic theory that eigensections can vanish only on sets
of measure zero.

Let us then introduce the weak spectrum of the metric measured spaceM = (M,µ, d)
as follows. First, define the following Rayleigh quotient of the Lipschitz function f (such
that

∫
M
f 2µ > 0):

R(f) =

∫
M
|∇f |2µ∫
M
f 2µ

.

Let us denote by Wk a vector space of Lipschitz functions on M of finite dimension k.
Then, for all integers k ≥ 0 we define:

λk+1(M)
.
= sup

Wk

inf{R(f) : f ⊥ Wk}. (5)

It is clear that λ1(M) = 0. It is easy to check that the sequence λj(M) is non-decreasing.

Having said that, we state the main theorem of this section.

Theorem 4. Let M = (M,µ, d) be as above, with µ = σdvolg and σ ≥ 0. Then,
for each k = 1, 2, . . . we can find a set S of k points x1, . . . , xk ∈ M such that, if

r = 5

(
(k + 1)Cd(M)2

λk+1(M)

)1/3

, we have

µ(Sr) ≥ 1− r.

Remark. If the density σ is strictly positive on M , then it is clear by the max-min
principle that the weak spectrum ofM is equal to the spectrum of the self-adjoint elliptic
operator L acting on L2(M,σ ·dvolg) and already defined in (4). That is, λk(M) = λk(L)
for all k. In this case, using an upper bound of [CGY2] and an additional measure
theoretic lemma proved in [CM] we can prove Theorem 1 in the Introduction, which is an

improvement of Theorem 4 for large λ = λk+1 because
log λ√
λ

decays faster than λ−1/3.
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2.2 Preparatory results

In the next lemma we estimate the eigenvalues of M as defined in the previous section.
The first part follows from a standard argument involving plateau functions, which applies
to our case. The second part is an estimate due to Chung, Grigor’yan and Yau.

Lemma 5. a) Let M = (M,µ, d) and assume that µ = σ · dvolg with σ ≥ 0. Assume
that there exist k+1 subsets of M , each of measure at least α > 0, which are 2r-separated
(meaning that the distance between any two of the given sets is at least 2r). Then:

λk+1(M) ≤ 1

αr2
.

b) If the density σ is strictly positive on M then:

λk+1(M) = λk+1(L) ≤ 1

r2

(
log

2

α

)2

.

where L is the operator Lu = ∆u− 1

σ
〈∇u,∇σ〉 defined in (4).

Proof. a) Fix a subspaceW of the space of Lipschitz functions onM , of finite dimension k.
Let A1, . . . , Ak+1 be the subsets satisfying the assumptions, that is

∫
Aj
µ =

∫
Aj
σdvolg ≥ α

and d(Ai, Aj) ≥ 2r if i 6= j. For each j = 1, . . . k + 1 let φj be the following plateau
function:

φj(x) =


1 on Aj,

1− 1

r
d(x,Aj) on Ωj = Arj \ Aj,

0 on the complement of Arj .

Note that the φj’s are disjointly supported. Linear algebra shows that we can find numbers
a1, . . . , ak+1 such that the function

φ =
k+1∑
j=1

ajφj

is Lipschitz, L2(µ)-orthogonal to W and non-zero. We can also assume that
∑
a2
j = 1.

The gradient of φ is supported on the union of the Ωj’s, and on Ωj one has |∇φ| ≤ |aj|/r
almost everywhere. Then: ∫

M

|∇φ|2µ ≤ 1

r2

∫
M

µ =
1

r2
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On the other hand: ∫
M

φ2µ ≥
∑
j

a2
j

∫
Aj

µ ≥ α

Therefore R(φ) ≤ 1/(αr2). As φ was orthogonal to W , we get:

inf{R(f) : f ⊥ W} ≤ 1

αr2
.

The right hand side is independent of the subspace W ; hence taking the supremum over
all k-dimensional subspaces W does not change the upper bound. Recalling the definition
of λk+1 one obtains the first part of the Lemma.

b) If the density σ is positive, we can use an estimate of Chung, Grigory’an and Yau
[CGY1]. It says that, if the subsets A1, . . . , Ak+1 are at distance at least s from each
other, then:

λk+1(L) ≤ 4

s2
·max
i 6=j

(
log

2√
µ(Ai)µ(Aj)

)2

.

The second inequality is now immediate by taking s = 2r.

We will use a result of [CM] (corollary 2.3) which we state in a way more convenient to
our purposes. Consider our metric space (M,d) and recall the packing constant Cd(M).
Let ν be any measure on M . Then we have

Proposition 6. Let N be a positive integer. Suppose that for a given s > 0, we have for
each x ∈M

ν(B(x, s)) ≤ ν(M)

4Cd(M)2N
.

Then, there exist N subsets A1, ..., AN of M such that ν(Ai) ≥
ν(M)

2Cd(M)N
for each i and,

for each i 6= j: d(Ai, Aj) ≥ 3s.

We will use the Proposition in the proof of Theorem 4 for ν given by the restriction of
µ to a closed subset.

2.3 Proof of Theorem 4

Let λk+1(M) = λ and assume that it is positive. Let:

r = 5

(
(k + 1)Cd(M)2

λ

)1/3

. (6)
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We will prove that there exist a set S of suitably chosen points x1, . . . , xk (not neces-
sarily distinct) such that

µ(Sr) ≥ 1− r. (7)

We can suppose r < 1.

Let α =
r

4(k + 1)Cd(M)2
. By the definitions of r and α one has:

λ =
125

4αr2
. (8)

Step 1: construction of the points. We choose x1 so that µ(B(x1,
r
4
)) ≥ µ(B(x, r

4
))

for all x ∈M , and set:
X1 = B(x1, r)

c.

Next, we choose x2 ∈ X1 so that µ(B(x2,
r
4
)) ≥ µ(B(x, r

4
)) for all x ∈ X1, and set:

X2 = (B(x1, r) ∪B(x2, r))
c .

We continue in this way till we obtain k points x1, . . . , xk: to construct the j-th point
xj ∈ Xj−1, we demand that µ(B(xj,

r
4
)) ≥ µ(B(x, r

4
)) for all x ∈ Xj−1 and define

Xj = (B(x1, r) ∪ · · · ∪B(xj, r))
c .

Note that if Xj is empty for some j ≤ k then µ (B(x1, r) ∪ · · · ∪B(xj, r)) = 1 > 1− r, so
we can take S = {x1, ..., xj−1}. We have µ(Sr) ≥ 1− r and the theorem is proved. So we
can assume that

Xk = (B(x1, r) ∪ · · · ∪B(xk, r))
c

is non-empty. Inequality (7) (and the theorem) follows if we show that

µ(Xk) ≤ r. (9)

Step 2: proof of (9). We argue by contradiction and show that the inequality

µ(Xk) > r (10)

cannot occur. Let us then assume (10) and denote by Bi the ball B(xi,
r
4
). By construc-

tion, the sets B1, . . . , Bk and Xk are r
2
-separated and µ(B1) ≥ µ(B2) ≥ · · · ≥ µ(Bk).

First case. Assume:
µ(Bk) ≥ α.
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Then µ(Bj) ≥ α for all j; moreover:

µ(Xk) ≥ r >
r

4(k + 1)Cd(M)2
= α

simply because Cd(M) ≥ 1. Therefore the sets B1, . . . , Bk, Xk are r
2
-separated and each

of them has measure at least α. By Lemma 5:

λ = λk+1(M) ≤ 16

αr2
(11)

which contradicts (8). Then the first case does not occur.

Second case. Assume:
µ(Bk) < α. (12)

Consider the closed subset X = Xk−1. By the definition of xk one has:

µ(B(x,
r

4
)) ≤ µ(Bk) ≤ α

for all x ∈ X. Recall that Xk ⊆ Xk−1 = X.
We now consider the metric space (M,d) with the measure ν given by the restriction

of µ to the closed subspace X, that is ν(A) = µ(A ∩X). By (10) we have

r < µ(Xk) ≤ µ(X) = ν(M).

and therefore
ν(B(x,

r

4
) ≤ µ(B(x,

r

4
)

≤ α

=
r

4(k + 1)Cd(M)2

≤ ν(M)

4(k + 1)Cd(M)2

By Proposition 6 applied for s = r
4

and N = k + 1 we conclude that there exist k + 1

subsets A1, . . . , Ak which are 3r
4

-separated and such that

ν(Ai) ≥
ν(M)

2Cd(M)(k + 1)
>

r

2Cd(M)(k + 1)
≥ 2Cd(M)α ≥ 2α.

for all i. Then µ(Ai) ≥ 2α for all i. Applying Lemma 5 one would obtain:

λ = λk+1(M) ≤ 32

9αr2
(13)

which is again a contradiction with (8). The proof of Theorem 4 is now complete.
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2.4 Proof of Theorem 1

Set λk+1(M) = λ and assume λ ≥ e. Let:

r = β
log λ√
λ
, (14)

where β = 8(k + 1)Cd(M)2. We will find a set S of k points x1, ..., xk such that

µ(Sr) ≥ 1− r. (15)

which is the statement of the theorem.

Set α =
r

4(k + 1)Cd(M)2
. We first observe that

λ >
256

r2

(
log

2

α

)2

. (16)

In fact (14) gives λ =
β2

r2
(log λ)2 ≥ β2

r2
, and substituting inside log λ we obtain (16)

because β
r

= 2
α

by the definitions of α and β and the fact that β ≥ 8.

In order to show (15) we follow Step 1 and Step 2 exactly as in the proof of the previ-
ous theorem: we construct the points x1, . . . , xk as before and show that the inequality
µ(Xk) > r leads to a contradiction with the inequality (16). The only change is to use
the second inequality of Lemma 5 instead of the first, so that (11) becomes:

λ ≤ 16

r2

(
log

2

α

)2

,

and (13) becomes:

λ ≤ 64

9r2

(
log

2

α

)2

,

both of which contradicting (16).

Remark. It is not possible to replace the constant β in (14) by β(λ) for a function
β(λ) → 0 as λ → ∞. In fact, taking β = constant is the optimal choice for the radius r
(see Section 4.2).

3 The estimate for Laplace type operators

The scope of this section is to prove Theorem 3 stated in the Introduction. We start from
the following:
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Theorem 7. Let Mn be a compact Riemannian manifold without boundary and D any
Laplace-type operator on M . Fix integers j, k with j ≤ k and consider the m-m-space
(M,µj, d), where µj = |ψj|2 ·dvolg and ψj is a unit norm eigensection associated to λj(D).

Then there exists a set Sj of k points xj1, . . . , x
j
k ∈M such that if r = 5

(
k(k+1)Cd(M)2

λk+1(D)−λj(D)

)1/3

then
µj(S

r
j ) ≥ 1− r.

Of course, the result is significant only when the gap λk+1(D)−λj(D) is large enough.
As the gap λk+1(D) − λk(D) increases to ∞, we see that any eigensection associated to
λj(D), with j ≤ k, tends to concentrate its norm around at most k points xj1, ..., x

j
k, a

priori depending on j. It is natural to ask if there is a relation between all these points for
different eigenvalues. We can in fact show that, as the gap tends to infinity, all squared
norms |ψ1|2, ..., |ψk|2 will concentrate around a common set of k points. Actually, we will
show that this also happens for the squared norm of any section in the direct sum of the
first k eigenspaces: this is the statement of Theorem 3.

3.1 Proof of Theorem 7

The proof of Theorem 7 depends on the following two lemmas, in which we bound the
gaps in the spectrum of D by the weak spectrum of the m-m-spacesM corresponding to
the densities σ = |ψ|2, where ψ is an eigensection of D. We then apply Theorem 4 to
conclude.

Recall that D = ∇?∇+ T , where T is a symmetric endomorphism of the fiber. So the
quadratic form associated to D is

Q(ψ) =

∫
M

|∇ψ|2 + 〈Tψ, ψ〉,

which is defined on the space of H1-sections of the bundle (here integration is with respect
to the Riemannian measure dvolg). We fix an orthonormal basis of eigensections of D
and denote it by (ψ1, ψ2, . . . ).

Lemma 8. Let f be a Lipschitz function on M and ψ a smooth section of the bundle.
Then:

Q(fψ) =

∫
M

f 2〈Dψ,ψ〉+ |∇f |2|ψ|2.

Lemma 9. Fix a positive integer k and let j ≤ k. Let ψj be an eigensection associated
to λj(D), of unit L2-norm, and consider the m-m-space Mj = (M,µj, d) where µj =
|ψj|2dvolg . Then:

λk+1(D)− λj(D) ≤ kλk+1(Mj).

13



Theorem 7 now follows immediately from Lemma 9 and Theorem 4 applied with the
density σ = |ψj|2.

Proof of Lemma 8. On the subset where ∇f exists (hence a.e. on M) one has:

|∇(fψ)|2 = |∇f |2|ψ|2 + f 2|∇ψ|2 + 2f〈∇∇fψ, ψ〉. (17)

Now: ∫
M

2f〈∇∇fψ, ψ〉 =

∫
M

1

2
〈∇f 2,∇|ψ|2〉 =

∫
M

1

2
f 2∆|ψ|2

hence

Q(fψ) =

∫
M

|∇(fψ)|2 + 〈T (fψ), fψ〉

=

∫
M

f 2

(
|∇ψ|2 +

1

2
∆|ψ|2 + 〈Tψ, ψ〉

)
+ |∇f |2|ψ|2

Now recall the identity (Bochner formula): 〈Dψ,ψ〉 = |∇ψ|2 +
1

2
∆|ψ|2 + 〈Tψ, ψ〉. The

lemma follows.

Proof of Lemma 9. Given the metric-measure spaceM = (M,µ, d) recall the definition
of weak spectrum:

λh+1(M) = sup
Wh

inf{R(f) : f ⊥ Wh}.

where

R(f) =

∫
M
|∇f |2µ∫
M
f 2µ

,

and Wh denotes a vector subspace of Lipschitz functions having dimension h. We will
write for brevity λi(M) = λi.

Fix ε > 0. Then, for all integers k ∈ N we construct a (k+ 1)-dimensional subspace Wk+1

of the space of Lipschitz functions on M such that, for all f ∈ Wk+1 one has:

R(f) ≤ k(λk+1 + ε). (18)

Set:
W1 = span(f1),

where f1 is the constant function 1. By definition, there exists a non-vanishing smooth
function f2 which is orthogonal to W1 and satisfies:

R(f2) ≤ λ2 + ε.

We set
W2 = span(f1, f2).

14



We can assume that f2 has unit L2-norm. Continuing this process, we get

Wk+1 = span(f1, . . . , fk+1),

where (f1, . . . , fk+1) is an orthonormal set and, for all j = 1, . . . , k + 1:

R(fj) ≤ λj + ε ≤ λk+1 + ε. (19)

Let us prove (18). Let f =
∑k+1

j=1 ajfj be a function in Wk+1. We can assume that it

has unit norm, so that
∑

j a
2
j = 1. By the triangle inequality, since ∇f1 = 0, one has

|∇f | ≤
∑k+1

j=2 |aj||∇fj|. By the Schwarz inequality |∇f |2 ≤
∑k+1

j=2 |∇fj|2 and therefore, by

(19):

R(f) ≤
k+1∑
j=2

R(fj) ≤ k(λk+1 + ε).

We can now prove the lemma. Fix ε > 0 and consider the m-m-spaceMj with measure
µj = |ψj|2dvolg, as in the statement of the Lemma. Let Wk+1 be the subspace satisfying
(18). By linear algebra, we can find a non-vanishing f ∈ Wk+1 such that the section fψj
has unit norm and is orthogonal to the first k eigensections ψ1, . . . , ψk of the spectrum of
D. Using fψj as test-section for the eigenvalue λk+1(D), we obtain, by Lemma 8:

λk+1(D) ≤ Q(fψj) =

∫
M

f 2〈Dψj, ψj〉+ |∇f |2|ψj|2.

As 〈Dψj, ψj〉 = λj(D)|ψj|2 this becomes:

λk+1(D)− λj(D) ≤ R(f) ≤ k(λk+1(Mj) + ε),

by (18). Letting ε→ 0 we obtain the assertion.

3.2 Proof of Theorem 3.

Let us start with the formal proof by considering an orthonormal basis (ψ1, . . . , ψk) of the
direct sum of the first k eigenspaces of D. Given µj = |ψj|2 · dvolg, let us introduce the
following auxiliary measure, which is just the average of the µj’s:

µ̃ =
1

k

k∑
j=1

µj.

We also fix the radius

r = 5

(
k2(k + 1)Cd(M)2

λk+1(D)− λk(D)

)1/3

. (20)
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We divide the proof in two steps.

Step 1. There exists a set of points Q = {y1, . . . , yl} with the property that µ̃(B(yj, r)) ≥
r

k2
for all j and µ̃(Qr) ≥ 1− 2r.

Step 2. There exists a subset T = {x1, . . . , xm} of Q, with m ≤ k, such that:

µ̃(T 5r) ≥ 1− 5r.

(This gives a concentration result for the averaged measure µ̃).

Thanks to Steps 1 and 2, we can conclude as follows: let ψ =
∑k

j=1 ajψj be any unit

norm section in the direct sum of the first k eigenspaces of D (so that
∑

j a
2
j = 1) and let

µ = |ψ|2dvolg. By the Schwarz inequality we have, at any point:

|ψ|2 ≤

(∑
j

|aj||ψj|

)2

≤
∑
j

|ψj|2,

that is, µ ≤ kµ̃. We deduce

µ((T 5kr)c) ≤ µ((T 5r)c) ≤ kµ̃((T 5r)c ≤ 5kr

by Step 2. We now take S = T : then µ(S5kr) ≥ 1− 5kr and the theorem follows.

For the proof of the two steps we need the following lemma. Note that we can assume
r < 1/5.

Lemma 10. Assume that there exist k + 1 subsets A1, . . . , Ak+1 which are 2r-separated
and have µ̃-measure at least β. Then:

λk+1(D)− λk(D) ≤ k

βr2
.

Proof. As in the proof of Lemma 5, we can construct k + 1 disjointly supported, plateau

functions f1, . . . , fk+1 with Rµ̃(fj) ≤
1

βr2
for each j, where Rµ̃ is the Rayleigh quotient

relative to the measure µ̃. As µ̃ is the average of the µj’s, we see that for any non-negative
function f there is an index i (depending on f) such that:

∫
M
fµ̃ ≤

∫
M
fµi. Therefore,

16



for each j = 1, . . . , k + 1 there is an index α(j) = 1, . . . , k such that:

Rµ̃(fj) =

∫
M
|∇fj|2µ̃∫
M
f 2
j µ̃

≥ 1

k

∫
M
|∇fj|2µα(j)∫
M
f 2
j µα(j)

≥ 1

k
Rµα(j)

(fj)

and then Rµα(j)
(fj) ≤

k

βr2
for all j. We consider the sections sj = fjψα(j) for j =

1, . . . , k + 1: they are disjointly supported and we can use them as test-sections for the
eigenvalue λk+1(D). Using Lemma 8 one sees that

λk+1(D)− λk(D) ≤ sup
j
{Rµα(j)

(fj)} ≤
k

βr2
.

Proof of Step 1. For all j ≤ k we observe from (20):

r ≥ 5

(
k(k + 1)Cd(M)2

λk+1(D)− λj(D)

)1/3

.

So, by Theorem 7, there exist finite subsets S1, . . . , Sk ⊆ M of cardinality less than or
equal to k such that, for all j:

µj(S
r
j ) ≥ 1− r.

We set P = S1 ∪ · · · ∪ Sk and observe that, by the definition of µ̃:

µ̃(P r) ≥ 1− r. (21)

We now consider the subset Q = {y1, . . . , yl} formed by all points yj ∈ P such that

µ̃(B(yj, r)) ≥
r

k2
. Let Q′ = P \ Q. Then by definition µ̃((Q′)r) ≤ r. Since, by (21),

µ̃((Q′)r) + µ̃(Qr) ≥ 1− r we obtain

µ̃(Qr) ≥ 1− 2r (22)

as asserted. Note in particular that Q is not empty because r < 1/5 by assumption.

Proof of Step 2. We construct the subset T = {x1, . . . , xm} of Q as follows. Set:

x1 = y1.

17



If there exists some point yj ∈ Q in the complement of B(x1, 4r) we select it and denote
it by x2. Next, if there exists a point of Q in the complement of B(x1, 4r) ∪B(x2, 4r) we
select it and denote it by x3, and so on. We iterate the process until it is possible, and
obtain after m ≤ l steps the required subset T .

Assume that m ≥ k + 1. Then the balls Aj = B(xj, r) with j = 1, . . . , k + 1 are 2r-

separated by construction, and have µ̃-measure at least equal to β =
r

k2
. By Lemma 10

we see that:

λk+1(D)− λk(D) ≤ k3

r3
. (23)

However, the definition (20) of r gives λk+1(D) − λk(D) =
c

r3
with the constant c =

125k2(k + 1)Cd(M)2 > k3 and we get a contradiction with (23).

Therefore m ≤ k.

By the construction of T , every point yj ∈ Q is at distance not greater than 4r to some
point of T , that is

Q ⊆ T 4r.

By the triangle inequality Qr ⊆ T 5r and therefore, by (22)

µ̃(T 5r) ≥ µ̃(Qr) ≥ 1− 2r > 1− 5r,

and Step 2 follows.

4 Appendix

4.1 Facts about the Levy-Prokhorov distance

Recall that the Lévi-Prokhorov distance dP between two probability mesaures defined on
the same metric space (M,d) is:

dP (ν1, ν2) = inf{r > 0 : ν1(C) ≤ ν2(C
r) + r and ν2(C) ≤ ν1(C

r) + r for all C}.

Proposition 11. Let (M,µ, d) be a m-m-space, S = {x1, . . . , xk} a set of k points in M
and r > 0. Then µ(Sr) ≥ 1 − r if and only if there exist weights p1, . . . , pk ∈ [0, 1) such
that

∑
pj = 1 and

dP (µ, δ) ≤ r,

where δ =
∑k

i=1 piδxi and δxi is the Dirac measure concentrated at the point xi.

Proof. Suppose first that dP (µ, δ) ≤ r. Then, choosing C = S in the definition of dP , we
have

1 = δ(S) ≤ µ(Sr) + r

18



and therefore µ(Sr) ≥ 1− r.

To prove the converse, we assume µ(Sr) ≥ 1− r. We first define the weights pi.

Denote by Bi the ball B(xi, r) and consider the sets {Ai}ki=1 defined by:{
A1 = B1

Ai = Bi ∩ (B1 ∪ ... ∪Bi−1)
c for i ≥ 2.

Then Ai ⊆ Bi and and Ai∩Aj = ∅ if i 6= j. Set A = A1∪ ...∪Ak. Then A = B1∪ ...∪Bk =
Sr so that

µ(A) = µ(Sr) ≥ 1− r.

• We now choose the weights pi =
µ(Ai)

µ(A)
.

The proof is complete if we show that, for each Borel subset C, we have{
δ(C) ≤ µ(Cr) + r

µ(C) ≤ δ(Cr) + r.
(24)

We can order the points so that x1, . . . , xt ∈ C and xj /∈ C for j = t + 1, . . . , k. Then
δ(C) = p1 + · · ·+pt. Now B1∪· · ·∪Bt ⊆ Cr; as Ai ⊆ Bi and the Ai’s are pairwise disjoint
we have:

µ(A1) + · · ·+ µ(At) ≤ µ(B1 ∪ · · · ∪Bt) ≤ µ(Cr).

Then:
δ(C) = p1 + · · ·+ pt

=
µ(A1) + · · ·+ µ(At)

µ(A)

= µ(A1) + · · ·+ µ(At) +
µ(A1) + · · ·+ µ(At)

µ(A)
(1− µ(A))

≤ µ(Cr) + 1− µ(A)

≤ µ(Cr) + r

which proves the first inequality in (24). For the second, write

µ(C) = µ(C ∩ A1) + ...+ µ(C ∩ Ak) + µ(C ∩ Ac)
and note that, if C ∩ Ai 6= ∅, then xi ∈ Cr. As µ(C ∩ Ai) ≤ µ(Ai) = piµ(A) ≤ pi and
µ(C ∩ Ac) ≤ µ(Ac) ≤ r we have

µ(C) ≤
∑

i:xi∈Cr
pi + r

≤ δ(Cr) + r
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and the Proposition follows.

4.2 Theorem 1 is sharp

For R > 0, let MR be the surface of revolution in R3:

MR = {(x, y, z) ∈ R3 : y2 + z2 =
1

R2
e−2Rx, x ∈ [0, 1]},

and consider the metric measure space (MR, µ, d) where µ is the normalized Riemannian
measure and d is the extrinsic distance inherited from R3. By a calculation in [FT] one
knows that

λ2(MR) ≥ 1

8
R2 (25)

(we take the Neumann boundary conditions). By the equivalent formulation of Theorem
1, given in Theorem 2, for each R there exists a point p ∈MR such that:

dP (µ, δp) ≤ γR
log λR√
λR

for the constant γR = 16Cd(MR)2, where we set λR = λ2(MR). However, as we use the
extrinsic distance, the constant γR admits a uniform upper bound by the packing constant
of R3 (see section 1.1) hence:

dP (µ, δp) ≤ γ
log λR√
λR

, (26)

for some point p ∈MR and for an absolute constant γ (we can take in fact γ = 16(1+36)2).

Now, as R → ∞ the first positive eigenvalue λR → ∞ by (25). Therefore, by (26),
the normalized Riemannian measure µ concentrates at some point of MR: this is quite
evident and can be verifed directly from the definition of MR, because the limit metric
measure space as R → ∞ (in any reasonable sense) is the unit interval [0, 1] endowed
with its canonical distance and the Dirac measure supported at 0. In fact, one can check
that the relative measure of a set at positive distance α from the circle {x = 0} decreases
to zero like e−αR.

The scope of this section is to show that, apart from the constant γ, the inequality
(26) is actually sharp.

Theorem 12. Let MR and λR be as above. Then there exists R0 such that, for all R ≥ R0

and for all q ∈MR one has:

dP (µ, δq) ≥
1

48

log λR√
λR

.

20



For the proof, we use the following simple fact:

Lemma 13. Assume that there exist two subsets A,B with relative volume at least s, and
such that d(A,B) ≥ 2s. Then dP (µ, δq) ≥ s for all q ∈MR.

Proof. Assume that there exists q ∈ MR such that dP (µ, δq) < s. One sees from the
definition of dP that µ(B(q, s)) > 1− s and therefore µ(B(q, s)) + µ(A) > 1. So A must
intersect B(q, s) and there exists a ∈ A such that d(a, q) < s. Similarly, there exists
b ∈ B with d(b, q) < s. Applying the triangle inequality we get a contradiction with the
assumption d(A,B) ≥ 2s.

We can now prove the theorem.

By (25) one has λR >
R2

9
hence, for R large,

1

48

log λR√
λR
≤ 1

8

logR

R
. So, it is enough to

show that

dP (µ, δq) ≥
1

8

logR

R
(27)

for R large and for all q ∈MR.

For L < L′ in the interval [0, 1] consider the strip

M[L,L′] = {(x, y, z) ∈MR : L ≤ x ≤ L′}.

We will apply the Lemma taking:

A = M[0, 1
R

], B = M[ 1
2

logR
R

,1], s =
1

8

logR

R
.

We need the following simple volume estimate:

µ(M[L,L′]) ≥
e−LR − e−L′R

2(1− e−R)
. (28)

In fact, observe that MR is obtained by rotating the curve y = 1
R
e−Rx around the

x-axis. Then:

Vol(M[L,L′]) =
2π

R

∫ L′

L

e−Rxds,

with ds =
√

1 + e−2Rxdx. Inequality (28) now follows observing that dx ≤ ds < 2dx and

recalling that µ(M[L,L′]) =
Vol(M[L,L′])

Vol(M[0,1])
.
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By the volume estimate in (28):

µ(A) ≥ 1− e−1

2(1− e−R)
,

µ(B) ≥ R−
1
2 − e−R

2(1− e−R)
,

d(A,B) ≥ 1

2

logR

R
− 1

R
.

It is now clear that, for R ≥ R0 sufficiently large, one has µ(A) ≥ s, µ(B) ≥ s and

d(A,B) ≥ 2s. The Lemma gives dP (µ, δq) ≥ s =
1

8

logR

R
and the theorem is proved.

4.3 Example for differential forms

We will now construct an example with a large gap on the spectrum of the Laplacian on
p-forms, but in which there is no concentration of the Riemannian volume.

Indeed, the construction of large eigenvalues for p-forms is well-known, see [GP], [Gu],
[CE]. We can easily adapt the construction described in [GP] for an hypersurface in Rn+1,
and we will only briefly sketch it.

We begin with a given hypersurface M0 ⊂ Rn+1, with p-th De Rham cohomology space
of a given positive dimension. Then we deform M0 by adding a long cylinder [0, L]×Sn−1

closed by a hemisphere. We denote by ML this family of manifolds, whose volume is of
the order of L as L→∞. It is shown in [GP] that, for 2 ≤ p ≤ n−2, the nonzero p-forms
spectrum of ML is bounded below by a positive constant C not depending on L.

After renormalisation by a factor of order L−1/n, we get a family of constant volume 1,
with first nonzero eigenvalue for p-forms going to∞ with L. Using the extrinsic Euclidean
distance, we see that the packing constant is uniformly bounded, we can conclude that
the L2-norm of the harmonic forms have to concentrate, indeed on the part corresponding
to M0.

However, there is no concentration of the volume (the part M0 concentrate to a point
and the cylinder looks like a homogeneous 1-dimensional cylinder of length L1−1/n).

4.4 Expanders

In this section we construct a family of manifolds M̄i of fixed dimension n, such that
λ2(M̄i)→∞ but for which there is no concentration of the volume around any point.

We start from an n-dimensional compact, hyperbolic manifold Mi such that Vol(Mi)→
∞ as i → ∞ and λ2(Mi) ≥ C(n) > 0, where C(n) is a constant not depending on i. It
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is well known that such examples exist (see for example [Br]), even if their construction,
related to the concept of expanders, is not easy. The Mi’s can be realized as coverings of
a fixed manifold. It is also known that the diameter of Mi is proportional to ln Vol(Mi),
hence tends to infinity as i→∞.

So, if we multiply the metric of Mi by (diam(Mi))
−1, and denote by M̄i the new family

of Riemannian manifolds, it is clear that λ2(M̄i) → ∞ but diamM̄i = 1. As M̄i is a
covering, the distribution of the volume is uniform, and we see that it cannot concentrate
in a neighbourghood of a single point. It concentrates however in the sense described in
[CGY1]: two sets Ai, Bi ⊂ M̄i of volume ≥ κVol(M̄i) (with a fixed κ > 0) have to be very
close to each other, even if κ is small.
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